SCREENING SITE INSPECTION REPORT
FOR
DIAMOND INTERNATIONAL CORPORATION
U.S. EPA ID: ILD980683197
SS ID: NONE
TDD: F05-8709-003

PAN: FILO529SA

JANUARY 26, 1989

ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415 International Specialists in the Environment

recycled paper

SIGNATURE PAGE
FOR
SCREENING SITE INSPECTION REPORT
FOR
DIAMOND INTERNATIONAL CORPORATION
U.S. EPA ID: ILD980683197
SS ID: NONE

TDD: F05-8709-003 PAN: FIL0529SA

Prepared	by:	Melanie J. Nesterenkol FIT Team Leader	Date: 1-31-89
		Ecology and Environment, Inc.	
Reviewed	by:	Kurt Sims FIT Unit Manager Ecology and Environment, Inc.	Date: <u>/-3/-89</u>
Approved	by	Jerry Oskvarek FIT Office Manager Ecology and Environment, Inc.	Date: 2/1/89

TABLE OF CONTENTS

Section		Page
1	INTRODUCTION	1-1
2	SITE BACKGROUND	2-1
	2.1 INTRODUCTION	2-1
	2.2 SITE DESCRIPTION	2-1
	2.3 SITE HISTORY	2-1
3	SCREENING SITE INSPECTION PROCEDURES AND FIELD	
	OBSERVATIONS	3-1
	3.1 INTRODUCTION	3–1
	3.2 SITE REPRESENTATIVE INTERVIEW	3-1
	3.3 RECONNAISSANCE INSPECTION	3–2
	3.4 SAMPLING PROCEDURES	3-4
4	ANALYTICAL RESULTS	4-1
	4.1 INTRODUCTION	4-1
	4.2 RESULTS OF CHEMICAL ANALYSIS OF FIT-	
•	COLLECTED SAMPLES	4-1
5	DISCUSSION OF MIGRATION PATHWAYS	5–1
	5.1 INTRODUCTION	5–1
	5.2 GROUNDWATER	5–1
	5.3 SURFACE WATER	5-4
	5.4 AIR	5–5
	5.5 FIRE AND EXPLOSION	5–5
	5.6 DIRECT CONTACT	5–5
6	BIBLIOGRAPHY	6-1

Apper	<u>dix</u>	Page
A	SITE 4-MILE RADIUS MAP	A-1
В	U.S. EPA FORM 2070-13	B-1
С	U.S. EPA IMMEDIATE REMOVAL ACTION CHECKSHEET	C-1
D	FIT SITE PHOTOGRAPHS	D-1
E	CHEMICAL ANALYSIS DATA OF FIT-COLLECTED SAMPLES	E-1
F	WELL LOGS OF THE AREA OF THE SITE	F-1

LIST OF ILLUSTRATIONS

Figure		Page
2-1	Site Location	2-2
3-1	Site Features	3-3
3-2	Soil Sampling Locations	3-5

LIST OF TABLES

<u>Table</u>		Page
4-1	Results of Chemical Analysis of FIT-Collected Soil	
	Samples	4-2

1. INTRODUCTION

Ecology and Environment, Inc., Field Investigation Team (FIT) was tasked by the United States Environmental Protection Agency (U.S. EPA) to conduct a screening site inspection (SSI) of the Diamond International Corporation site under contract number 68-01-7347.

The site was initially discovered by the Illinois Environmental Protection Agency (IEPA). Apparently, the site was submitted as a potential hazardous waste site because of the existence of evaporated wastewater lagoons on the property. The site was evaluated in the form of a preliminary assessment (PA) that was submitted to U.S. EPA. The PA was prepared by Kenneth W. Corkill of the IEPA and is dated May 3, 1986.

FIT prepared an SSI work plan for the Diamond International Corporation site under technical directive document (TDD) F05-8705-013, issued on May 4, 1987. The SSI work plan was approved by U.S. EPA on August 4, 1987. The SSI of the Diamond International Corporation site was conducted on October 27, 1987, under TDD F05-8709-003, issued on September 1, 1987.

The FIT SSI included an interview with a site representative, a reconnaissance inspection of the site, and the collection of six soil samples.

The purposes of an SSI have been stated by U.S. EPA in a directive outlining Pre-Remedial Program strategies. The directive states:

All sites will receive a screening SI to 1) collect additional data beyond the PA to enable a more refined

preliminary HRS [Hazard Ranking System] score, 2) establish priorities among sites most likely to qualify for the NPL [National Priorities List], and 3) identify the most critical data requirements for the listing SI step. A screening SI will not have rigorous data quality objectives (DQOs). Based on the refined preliminary HRS score and other technical judgement factors, the site will then either be designated as NFRAP [no further remedial action planned], or carried forward as an NPL listing candidate. A listing SI will not automatically be done on these sites, however. First, they will go through a management evaluation to determine whether they can be addressed by another authority such as RCRA [Resource Conservation and Recovery Act].... Sites that are designated NFRAP or deferred to other statutes are not candidates for a listing SI.

The listing SI will address all the data requirements of the revised HRS using field screening and NPL level DQOs. It may also provide needed data in a format to support remedial investigation work plan development. Only sites that appear to score high enough for listing and that have not been deferred to another authority will receive a listing SI (U.S. EPA 1988).

U.S. EPA Region V has also instructed FIT to identify sites during the SSI that may require removal action to remediate an immediate human health and/or environmental threat.

SITE BACKGROUND

2.1 INTRODUCTION

This section includes information obtained from the SSI work plan preparation and site representative interview.

2.2 SITE DESCRIPTION

The Diamond International Corporation site is an inactive facility where "Vanity Fair" paper products (napkins, towels, toilet tissue, and facial tissue) were formerly manufactured. Two dry wastewater lagoons and one lagoon that still holds water are present on the site and were used in the treatment of wastewater from the papermaking process.

The site is located on a 51-acre parcel of land in a rural area of Wilmington, Illinois, in Will County (T.33N., R.9E., Sec. 25) on Peotone Road (see Figure 2-1). A 4-mile radius map of the Diamond International Corporation site is provided in Appendix A.

2.3 SITE HISTORY

The original owner of the property was Art Leopold, who operated the Stonebridge Paper Company and erected the on-site building in 1955. The property was sold to Johnson & Johnson, Sulfide Division, in 1971.

Johnson & Johnson was also involved in paper production on the site.

Diamond International Corporation acquired the property from Johnson & Johnson in August 1973, and operated it until February 1, 1980. The facility remained inactive until C.P. Inorganics purchased the property

SOURCE: Ecology and Environment, Inc., 1988; BASE MAP: USGS WILMINGTON, IL QUADRANGLE, 7.5 MINUTE SERIES, 1973.

FIGURE 2-1 SITE LOCATION

on June 21, 1986 (Arnett 1987; Baskerville March 2, 1988). There have been no documented regulatory-related response activities at the site (IEPA 1986).

During the period of ownership by Diamond International Corporation, the entire papermaking process was completed at the plant. Wood pulp was converted to paper and the finished products were packaged at the plant and shipped by truck or rail for distribution. The lagoons were installed by Diamond International Corporation to aid in the filtration of water used in manufacturing. The preliminary filtration occurred in the on-site building, where fibers and pulpy residues were removed from the water. The water was then pumped into the lagoons for aeration and sediment settling. Occasionally, water would accumulate in the basement of the on-site building and would also be pumped into the lagoons. According to the site representatives, the lagoons were not used for any purpose other than those stated above (Arnett 1987; Baskerville March 2, 1988).

The site property is currently owned by C.P. Inorganics, headquartered in Norfolk, Connecticut. C.P. Inorganics uses the on-site building for warehousing, but no other operations are currently active on-site. According to inventory lists, the following substances are stored at the facility: nickel sulfate, nickel nitrate, nickel chloride, cupric chloride, thiourea, urea, sodium sulfide, Greens Keeper fertilizer, ferric chloride, ferric sulfate, ammonia chloride, copper carbonate cake, copper turquoise, empty new drums, and new pallets. C.P. Inorganics intends to reopen the facility for the manufacture of liquid fertilizer (Arnett 1987; Baskerville May 24, 1988).

3. SCREENING SITE INSPECTION PROCEDURES AND FIELD OBSERVATIONS

3.1 INTRODUCTION

This section outlines procedures and observations of the SSI of the Diamond International Corporation site. Individual subsections address the site representative interview, reconnaissance inspection, and sampling procedures. Rationales for specific FIT activities are also provided. The SSI was conducted in accordance with the U.S. EPA-approved work plan.

The U.S. EPA Potential Hazardous Waste Site Inspection Report (Form 2070-13) for the Diamond International Corporation site is provided in Appendix B. The U.S. EPA Immediate Removal Action Checksheet for the Diamond International Corporation site is provided in Appendix C.

3.2 SITE REPRESENTATIVE INTERVIEW

Melanie J. Nesterenko, the FIT team leader, conducted an interview with Ed Arnett, employed as a controller by C.P. Inorganics at the firm's Joliet office located at 10 Industrial Avenue in Joliet, Illinois, and with Millie Baskerville, employed by C.P. Inorganics as an administrative secretary. Ms. Baskerville began working at the facility when it was owned by Stonebridge Paper Company. The interview was conducted at the site on October 27, 1987, at 10:00 a.m.

Also present at the interview was Kevin Lyons of FIT. The interview was conducted to gather information that would aid FIT in conducting SSI activities.

3.3 RECONNAISSANCE INSPECTION

Following the site representative interview, FIT conducted a reconnaissance inspection of the Diamond International Corporation site and surrounding area in accordance with Ecology and Environment (E & E) Health and Safety guidelines. The reconnaissance inspection included a walk-through of the site to determine appropriate health and safety requirements needed to conduct on-site activities and to make observations to aid in characterizing the site. FIT also determined exact sampling locations during the reconnaissance inspection.

The reconnaissance inspection was begun on October 27, 1987, at 11:00 a.m. No site representative chose to accompany FIT during the reconnaissance inspection.

Reconnaissance Inspection Observations. The Diamond International Corporation site is located on a 51-acre parcel of land, which is covered with brush and light forest. Land use in the vicinity of the site is primarily agricultural, with scattered industries nearby. The surface topography of the area surrounding the site slopes southwest toward the Kankakee River (A & H 1987).

The site is bordered on the north by Peotone Road, on the south by Forked Creek, on the west by a fence and the tracks of the G.M. & O. railroad, and on the east by a Johnson & Johnson Personal Products plant. The site perimeter is not wholly fenced, but three security guards are employed by C.P. Inorganics (Arnett 1987). No security guards were observed during the SSI. The area of the site occupied by the three wastewater lagoons is fenced and locked (see Figure 3-1 for locations of site features).

The three wastewater lagoons are located approximately 690 feet south of the on-site building. Dimensions of the two dry lagoons are approximately 30 feet by 10 feet by 12 feet deep. Dimensions of the lagoon that still holds water are approximately 30 feet by 30 feet. The water-filled lagoon is of unknown depth. Material on the bottom of the dry lagoons was gelatinous.

Flora around the lower perimeter of the dry lagoons appeared stressed, and flora did not grow on the bottom of the dry lagoons. Flora was abundant around the upper perimeters of the dry lagoons.

SOURCE: Ecology and Environment, Inc., 1988.

The on-site topography is hilly. Surface drainage is into Forked Creek on the southern boundary of the site. Forked Creek is perennial and flows westward into the Kankakee River. The creek is located approximately 1,381 feet south of the on-site building. According to a United States Geological Survey (USGS) topographic map, the creek enters the Kankakee River approximately 1/2 mile from the site. The creek is approximately 15 feet wide at the site boundary. At the southern boundary of the site, a bridge crosses over Forked Creek leading into a residential area. The FIT team observed one deer during the reconnaissance inspection. Photographs of the Diamond International Corporation site are provided in Appendix D.

3.4 SAMPLING PROCEDURES

Samples were collected by FIT at locations determined during the reconnaissance inspection to determine levels of U.S. EPA Target Compound List (TCL) compounds and U.S. EPA Target Analyte List (TAL) analytes present at the site. The TCL and TAL are provided in Appendix E.

On October 27, 1987, FIT collected five on-site surface soil samples in the vicinity of the wastewater lagoons and one potential background surface soil sample from the north end of the property (see Figure 3-2 for soil sampling locations).

Soil Sampling Procedures. Surface soil samples S1 and S2 were collected from the northern dry lagoon. Two samples were taken from this lagoon because vegetation surrounding the lower perimeter of the lagoon was particularly stressed. Surface soil sample S3 was collected from the second, southern dry lagoon. Surface soil samples S4 and S5 were collected downgrade from the lagoon area, following the natural contours of the surface topography.

The locations of samples S4 and S5 were chosen to determine whether TCL compounds and/or TAL analytes had migrated from the lagoon area toward Forked Creek.

A potential background sample (indicated as S6) was collected from the large expanse of lawn on the northern boundary of the site. The location of S6 was chosen because the soil in this area appeared to be a

SOURCE: Ecology and Environment, Inc., 1988.

representation of the type of soil found at the site. The lawn where S6 was collected had not been treated in any way (Baskerville March 2, 1988).

Surface soil samples S1, S2, S3, S4, S5, and S6 were obtained by using garden trowels to dig to an approximate depth of 6 inches. Soil from the approximate 6-inch depth was transferred to stainless steel bowls with the trowels. After debris had been removed from the soil, the soil was transferred from the bowls to sample bottles, using spoons (Ecology and Environment, Inc. 1987).

Standard E & E decontamination procedures were adhered to during the collection of all soil samples. The procedures included the scrubbing of all equipment (e.g., trowels, bowls, and spoons) with a solution of detergent and distilled water, and triple rinsing the equipment with distilled water before the collection of each sample (Ecology and Environment, Inc. 1987). All soil samples were packaged and shipped in accordance with U.S. EPA-required procedures.

As directed by U.S. EPA, samples S1, S2, S3, S4, S5, and S6 were analyzed for TCL compounds by MetraTRACE Incorporated of Earth City, Missouri, and for TAL analytes by Enseco/Rocky Mountain Analytical of Arvada, Colorado.

4. ANALYTICAL RESULTS

4.1 INTRODUCTION

This section includes results of chemical analysis of FIT-collected soil samples for TCL compounds and TAL analytes.

4.2 RESULTS OF CHEMICAL ANALYSIS OF FIT-COLLECTED SAMPLES

Chemical analysis of FIT-collected soil samples revealed substances from the following groups of TCL compounds and TAL analytes: heavy metals, common laboratory artifacts (e.g., methylene chloride, acetone, and phthalates), and common soil constituents (see Table 4-1 for complete soil sample chemical analysis results). Laboratory analytical data of soil sample analysis are provided in Appendix E.

Table 4-1
RESULTS OF CHEMICAL ANALYSIS OF
FIT-COLLECTED SOIL SAMPLES

Sample Collection Information			Sampl	Sample Number		
and Parameters	S1	s ₂	83	8.4	ខ្លួ	36
	٠.					
Date	10/27/87	10/27/87	10/27/87	10/27/87	10/27/87	10/27/87
Time	1100	1130	1200	1230	1300	1330
Organic Traffic Report Number	EQ257	EQ258	EQ259	EQ260	EQ261	EQ262
Inorganic Traffic Report Number	MER596	MER597	MER598	MER599	MER200	MER201
Compound Detected						
(values in µg/kg)						
Volatile Organics						
methylene chloride	940	f	91	370	220	350
acetone	009	160	40	61	31	130
carbon disulfide	1	35	!	1	1	1
1,1,1-trichloroethane	•	6	1	1	1	!
toluene	17	130	16	30	23	12
Semivolatile Organics						
di-n-butylphthalate	4,800	-	13,000	37,000	54,000	71,000
butylbenzylphthalate	ŀ	9,200	1	45,000	14,000	36,000
bis(2-ethylhexyl)phthalate	4,900	1	!	7,000	5,000	3,3005
Analyte Detected						
(values in mg/kg)						
aluminum	4,520	3,020	2,420	2,550	1,610	6,420
arsenic	ı	4.1Bs	3.08s	3.85	1.2BW	9.1
barium	40.7B	47.0B	52.0B	29.8B	22.5B	82.6
beryllium	!	1	ł	1	!	0.44B

Table 4-1 (Cont.)

Sample Collection Information			Sample	Sample Number		
and Parameters	S1	52	83	54	SS	se
Analyte Detected						
(values in mg/kg)						
(Continued)	. •					
calcium	4,1308	1,3308	514B	1,790	731B	1,890
chromium	25.3	10.3	7.5	4.1	3.0	8.8
cobalt	1	ł	ļ	ŀ		6.88
copper	556	161	112	7.5	13.0	10.8
iron	7,700	6,430	5,380	3,260	2,480	10,200
lead	38.9N	20.2N	N8.6	6.8N	6.8sN	12.3N
magnesium	2,1608	1,050B	557B	768B	341B	1,510
manganese	93.3	28.2	22.9	131	73.9	558
nickel	22.5B	7.98	5.0B	3.7B	2.2B	7.98
potassium	451BE	226BE	243BE	416BE	214BE	589BE
selenium	ŀ	1	1	1	I	0.38BWN
vanadium	10.9BE	8.0BE	7.1BE	5.4BE	3.4BE	16.4E
zinc	200	147	55.0	44.8	17.0	28.1

-- Not detected.

INTERPRETATION	Compound value may be semiquantitative.	Compound value may be semiquantitative if it is <5x the blank concentration (<10x the blank concentrations for common laboratory artifacts: phthalates, methylene chloride, acetone, toluene, 2-butanone).	INTERPRETATION	Analyte or element was not detected, or value may be semiquantitative.	Value is quantitative.	Value may be quantitative or semi- quantitative.	Value may be quantitative or semi- quantitative.	Value may be semiquantitative.
DEFINITION	Indicates an estimated value.	This flag is used when the compound is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.	DEFINITION	Estimated or not reported due to interference. See laboratory narrative.	Analysis by Method of Standard Additions.	Spike recoveries outside QC protocols, which indicates a possible matrix problem. Data may be biased high or low. See spike results and laboratory narrative.	Value is real, but is above instrument DL and below CRDL.	Post-digestion spike for furnace AA analysis is out of control limits (35-115%), while sample absorbance is <50% of spike absorbance.
COMPOUND QUALIFIERS	ט	æ	ANALYTE QUALIFIERS	3 B	ห	z z	[] B	М

Source: Ecology and Environment, Inc. 1988.

DISCUSSION OF MIGRATION PATHWAYS

5.1 INTRODUCTION

This section discusses data and information that apply to potential migration pathways and targets of TCL compounds and/or TAL analytes that may be attributable to the Diamond International Corporation site.

The five migration pathways of concern discussed are groundwater, surface water, air, fire and explosion, and direct contact.

5.2 GROUNDWATER

No groundwater samples were collected during the October 27, 1987 FIT site inspection of the Diamond International Corporation site.

There does exist a potential for TCL compounds and/or TAL analytes to migrate from the site to the groundwater in the vicinity of the site. This potential is based on the following information:

- TCL compounds and TAL analytes have been detected at the site.
- Surface soils are classified as Drummer silty clay loam and Proctor silt loam, consisting of mostly silt and clay with some sand. This surface soil is moderately permeable (Wascher 1962).
- The highest water-bearing unit in the area appears to be at approximately 30 feet to 100 feet and consists of Ft. Atkinson limestone of the Ordovician period. Above the

limestone there is approximately 30 feet of drift, including sand and gravel and some clay. The clay layers do not appear to be confining. Most wells drawing from water at this depth draw from the limestone, although water well logs indicate that some wells may be drawing from sand and gravel formations at approximately 30 feet (Illinois Department of Energy and Natural Resources; Illinois State Water Survey 1983).

- The second water-bearing unit appears to be at an approximate depth of 150 feet to 800 feet and consists of limestone and dolomite of the Galena and Platteville groups and sandstone, shale, and chert of the St. Peter sandstone group. All groups are of the Ordovician period. Above this aquifer and below the highest aquifer of Ft. Atkinson limestone, there is approximately 50 feet of shale. The 50 feet of shale sufficiently separates the two upper aquifers (Illinois Department of Energy and Natural Resources; Illinois State Water Survey 1983).
- The third water-bearing unit appears at approximately 1,500 feet and consists of sandstone of the Ironton-Galesville group of the Cambrian period. Above this aquifer are approximately 700 to 800 feet of dolomite and sandstone belonging to Cambrian and Ordovician periods (Illinois Department of Energy and Natural Resources; Illinois State Water Survey 1983).
- The city of Wilmington obtains its water from a municipal system using three wells. Well 1 is drilled to a depth of 710 feet and is screened in the St. Peter sandstone and Galena and Platteville limestone and dolomite. Well 2 is drilled to a depth of 1,566 feet and is screened in Ironton-Galesville sandstone. Well 3 is drilled to a depth of 1,578 feet and is also screened in Ironton-Galesville sandstone (see Appendix A for municipal well

- locations). The Wilmington municipal water system serves a population of approximately 4,500 (Illinois Department of Energy and Natural Resources; Illinois State Water Survey 1983; Sanderson 1967; Wiley May 20, 1987).
- The aquifer of concern appears to be the uppermost sand and gravel and Ft. Atkinson limestone. The potential is greatest for TCL compounds and/or TAL analytes to migrate to this highest aquifer rather than to the deeper aquifers. The deeper aquifers appear to have a sufficient aquatard, and the potential for migration of TCL compounds and/or TAL analytes to these aquifers appears minimal. Water well logs within 3 miles of the site indicate that 109 private wells are drawing from this uppermost aquifer; 25 private wells within 3 miles are drawing from St. Peter sandstone. Limited information at this time makes it impossible to determine how many of the 109 private wells are still in use and how many of the properties have an alternate source of drinking water. These 109 private wells serve approximately 295 people. If these residences are now hooked up to a municipal system or if an alternate source of drinking water is available, then few residents would be drawing drinking water from the highest aquifer. In that case, the aguifer of concern would be the less vulnerable St. Peter sandstone and Galena and Platteville limestone and dolomite aquifer (Illinois Department of Energy and Natural Resources).
- The nearest well, which is upgradient and on-site, supplies drinking water. It is drilled to a depth of 758 feet and is screened in St. Peter sandstone (Baskerville March 2, 1988).
- PSI, Inc., A & H/Flood Engineering Division completed a soil exploration of the Diamond plant in June 1987.
 Stream and river locations and water levels from soil

borings taken by PSI, Inc. indicate that groundwater in the vicinity of the site moves southwest toward Forked Creek and the Kankakee River. The highest groundwater level in the area is approximately 3 to 7 feet (A & H 1987; USGS 1973).

• The lagoons on-site have a clay liner of an unknown depth (Arnett 1987). The integrity of the liner is unknown.

5.3 SURFACE WATER

No surface water samples were collected during the October 27, 1987 site inspection of Diamond International Corporation.

A potential does exist for substances from the site to reach Forked Creek via surface water runoff. This potential is based on the following information:

- TCL compounds and TAL analytes have been detected at the site.
- Forked Creek abuts the southern border of the site property. It is located approximately 1,381 feet south of the on-site building. Forked Creek flows into the Kankakee River approximately 1/2 mile southwest of the site. The Kankakee River flows to the north (USGS 1973).
- Surface topography on-site slopes towards Forked Creek. Surface runoff drains into Forked Creek (A & H 1987; USGS 1973).
- No surface water intakes are present within 4 miles of the site. However, the city of Wilmington intends to eventually draw municipal drinking water from the Kankakee River. The Kankakee is used for recreation (Wiley May 20, 1987).

• Water from the on-site lagoons was discharged into the Kankakee while Diamond International Corporation was operating at the site. Water was gravity fed into the Kankakee through underground pipes with an outfall line of 2,500 feet over a 3% grade. This drainage system was installed in 1974 and discontinued in 1987. According to site representatives, the discharge water was periodically tested before it entered the Kankakee River. Site representatives also stated that no copies of the analyses or permit information concerning discharge to the Kankakee River is available at this time (Baskerville May 25, 1988; Baskerville June 3, 1988).

5.4 AIR

A release of contaminants to the air or potential for such release was not documented during the SSI of the Diamond International Corporation site. During the reconnaissance inspection, FIT site-entry instruments (photo-ionization detector with an 11.7 lamp, oxygen meter, radiation monitor, explosimeter, colorimetric monitoring tubes for hydrogen cyanide) did not detect levels above background concentrations at the site (Ecology & Environment, Inc. 1987). In accordance with the U.S. EPA-approved work plan, further air monitoring was not conducted by FIT.

A potential does exist for windblown particulates to carry TCL compounds and/or TAL analytes from the site.

5.5 FIRE AND EXPLOSION

No fire and/or explosion threat was documented during the SSI of the Diamond International Corporation site. During the reconnaissance inspection, the FIT explosimeter readings did not detect levels above background (Ecology & Environment, Inc. 1987).

5.6 DIRECT CONTACT

According to federal, state, and local file information, and interviews with site representatives, there is no documentation of an

incident of direct contact with TCL compounds and/or TAL analytes at the Diamond International Corporation site.

Access to the site is characterized as follows:

- The site property is only partially fenced. According to site representatives, three security guards are employed by C.P. Inorganics. No security personnel were observed by the FIT during the SSI.
- The lagoon area on-site is securely fenced and locked.
- According to calculations using a USGS topographic map of the area, the population within a 1-mile radius of the site is approximately 2,776 persons.

BIBLIOGRAPHY

- A & H/Flood Engineering Division, June 23, 1987, "Soils Exploration for the Diamond Star Plant, Wilmington, Illinois," Joliet, Illinois.
- Arnett, Ed, October 27, 1987, interview, controller, C.P. Inorganics, Joliet, Illinois, interviewed by Melanie Nesterenko of FIT.
- Bade, Jerry, April 27, 1987, telephone conversation, U.S. Fish and Wildlife Service, Rock Island, Illinois, contacted by Melanie Nesterenko of FIT.
- Bade, Jerry, June 20, 1987, telephone conversation, U.S. Fish and Wildlife Service, Rock Island, Illinois, contacted by Melanie Nesterenko of FIT.
- Baskerville, Millie, March 2, 1988, telephone conversation, administrative secretary, C.P. Inorganics, Wilmington, Illinois, contacted by Melanie Nesterenko of FIT.
- Baskerville, Millie, March 2, 1988, telephone conversation, administrative secretary, C.P. Inorganics, Wilmington, Illinois, contacted by Melanie Nesterenko of FIT.
- Baskerville, Millie, May 24, 1988, telephone conversation, administrative secretary, C.P. Inorganics, Wilmington, Illinois, contacted by Melanie Nesterenko of FIT.

- Baskerville, Millie, May 25, 1988, telephone conversation, administrative secretary, C.P. Inorganics, Wilmington, Illinois, contacted by Melanie Nesterenko of FIT.
- Baskerville, Millie, June 3, 1988, telephone conversation, administrative secretary, C.P. Inorganics, Wilmington, Illinois, contacted by Melanie Nesterenko of FIT.
- Ecology and Environment, Inc., 1987, Quality Assurance Project Plan Region V FIT Conducted Site Inspections, Chicago, Illinois.
- Illinois Department of Energy and Natural Resources, State Water Division, water well records of 144 wells, Will County, T.32N., R.9E., T.32N., R.10E., T.33N., R.9E., and T.33N., R.10E.
- IEPA, 1986, Potential Hazardous Waste Site Preliminary Assessment, for
 Diamond International Corporation, Illinois, U.S. EPA
 ID: ILD980683197, prepared by Kenneth W. Corkill, Springfield,
 Illinois.
- Illinois State Water Survey, 1983, <u>Public Groundwater Supplies in Will</u> County, Champaign, Illinois.
- McGrier, Ms., May 10, 1988, telephone conversation, U.S. Census Bureau, contacted by Melanie Nesterenko of FIT.
- Sanderson, Ellis W., Feburary 22, 1967, assistant hydrologist, "Summary of Groundwater Conditions at Five Cities in Northern Illinois,"
 Illinois State Water Survey, Champaign, Illinois.
- U.S. EPA, Office of Solid Waste and Emergency Response, Feburary 12, 1988, Pre-Remedial Strategy for Implementing SARA, Directive number 9345.2-01, Washington, D.C.
- U.S. Geological Survey, 1973, Symerton Quadrangle, Illinois, 7.5 Minute Series: 1:24,000.

- U.S. Geological Survey, 1973, Wilmington Quadrangle, Illinois, 7.5 Minute Series: 1:24,000.
- Wascher, H.L., Veale, P.T., and Odell, R.T., 1962, Will County Soils, Soil Report 80, University of Illinois, Urbana, Illinois.
- Wiley, Robert, May 11, 1987, telephone conversation, Mayor of the City of Wilmington, Wilmington, Illinois, contacted by Melanie Nesterenko of FIT.
- Wiley, Robert, May 20, 1987, telephone conversation, Mayor of the City of Wilmington, Wilmington, Illinois, contacted by Melanie Nesterenko of FIT.

APPENDIX A

SITE 4-MILE RADIUS MAP

SDMS US EPA Region V

Imagery Insert Form

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

	Illegible due to bad source documents. Image(s) in SDMS is equivalent to hard copy.
	Specify Type of Document(s) / Comment
	Confidential Business Information (CBI). This document contains highly sensitive information. Due to confidentiality, materials with such information are not available in SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comment
X	Unscannable Material: Oversized X or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comment
	4-MILE RADIUS MAP
	Other:

APPENDIX B

U.S. EPA FORM 2070-13

I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE 01 STATE 02 SITE NUMBER IL D980683197 SITE INSPECTION REPORT EPA PART 1 - SITE LOCATION AND INSPECTION INFORMATION II. SITE NAME AND LOCATION 01 SITE NAME (Legal, common, or descriptive name of site) 02 STREET, ROUTE NO., OR SPECIFIC LOCATION IDENTIFIER Diamond International Corporation Peotone Road 07 COUNTY 08 CONG CODE DIST 197 17 04 STATE 05 ZIP CODE 06 COUNTY 03 CITY Will IL 60481 Wilmington 10 TYPE OF OWNERSHIP (Check one) 09 COORDINATES X A. PRIVATE B. FEDERAL _____ C. STATE ___ D. COUNTY ___ E. MUNICIPAL LATITUDE LONGITUDE ___G. UNKNOWN 088008'00".0 F. OTHER 41°19'00".0 III. INSPECTION INFORMATION 01 DATE OF INSPECTION 03 YEARS OF OPERATION 02 SITE STATUS ACTIVE ACTIVE X INACTIVE 1955 | 1980 10/27/87 BEGINNING YEAR ENDING YEAR MO/DAY/YR 04 AGENCY PERFORMING INSPECTION (Check all that apply) A. EPA B. EPA CONTRACTOR Ecology and Environment, Inc. C. MUNICIPAL D. MUNICIPAL CONTRACTOR (Name of firm) ___G. OTHER E. STATE F. STATE CONTRACTOR (Name of firm) (Specify) 06 TITLE 08 TELEPHONE NC. 05 CHIEF INSPECTOR 07 ORGANIZATION Ecology and Environment, Inc. (312) 663-9415 Melanie Nesterenko Biologist 09 OTHER INSPECTORS 10 TITLE 11 ORGANIZATION 12 TELEPHONE NO. Kurt Sims Earth Scientist E & E, Inc. (312) 663-9415 Tom O'Brien E & E, Inc. (312) 663-9415 Biologist E & E, Inc. Wildlife Specialist (312) 663-9415 Kevin Lyons Marilou Martin Environmental Scientist E & E, Inc. (312) 663-9415 E & E, Inc.)312) 663-9415 13 SITE REPRESENTATIVES INTERVIEWED 14 TITLE 15 ADDRESS 16 TELEPHONE NO. 10 Industrial Avenue Joliet, IL Ed Arnett Controller (815) 727-1077 18 TIME OF INSPECTION 17 ACCESS GAINED BY (Check one) 19 WEATHER CONDITIONS X PERMISSION 10:30 a.m. Sunny, clear WARRANT IV. INFORMATION AVAILABLE FROM 01 CONTACT 02 OF (Agency/Organization) 03 TELEPHONE NO. Kevin Corkill IEPA/RPMS (815) 471-7951 04 PERSON RESPONSIBLE FOR SITE INSPECTION FORM 05 AGENCY 06 ORGANIZATION 07 TELEPHONE NO. 08 DATE

U.S. EPA

E & E, Inc.

(312) 663-9415

5/88

Melanie Nesterenko

EPA FORM 2070-13 (7-81)

	 		POTENTIAL HAZARI	OUS WASTE SITE			I. IDENTIF	ICATION
EPA	. •		SITE INSPECTI	ON REPORT			01 STATE	02 SITE NUMBER 0980683197
I			PART 2 - WASTE	INFORMATION		I	IL	D300003131
II. WASTE STA	TES, QUANTITIES, A	ND CHAR	ACTERISTICS					
O1 PHYSICAL S	TATES	02 WAS	TE QUANTITY AT SIT	E 03 WASTE CHARA	CTERISTICS			
(Check all th	nat apply)	(Measu:	Measures of waste quanti- (Check all that apply) ies must be independent)					
A. SOLID	E. SLURRY	ties m	nat pe indebeudeut	X A. TOXIC	E. S	SOLUBLE	<u>x</u> 1.	HIGHLY VOLATILE
	FINES X F. LIQUID	1 .		B. CORROSI	IVE T.	INFECTIO	ousJ. :	EXPLOSIVE
C. SLUDGE	G. GAS	•	TONS Unknown	C. RADIOAC	TIVE G. I	LAMMABI	LE K.	REACTIVE
D. OTHER U	· . —	CUBIC	YARDS	X D. PERSIST	TENT H.	IGNITABI	LE L.	INCOMPATIBLE
	(Specify)	İ		_ _	_		M. 1	NOT APPLICABLE
		NO. OF	DRUMS ·	-				
III. WASTE TI	PE Unknown							
CATEGORY	SUBSTANCE NAME		01 GROSS AMOUNT	02 UNIT OF MEASU	JRE 03 COM	MENTS		
SLU	SLUDGE							
OLW	OILY WASTE							
SOL	SOLVENTS							
PSD	PESTICIDES						**	
occ	OTHER ORGANIC CHEM	ICALS						
IOC	INORGANIC CHEMICAL	s						
ACD	ACIDS							
BAS	BASES							
MES	HEAVY METALS							
IV. HAZARDOUS SUBSTANCES (See Appendix for most frequently cited CAS Numbers)								
A1 61 = 5000 T	A3 61106m3 M65 M3 M		A3 636 WINDED	A4 6000360 (D7.60)	SAL VERNAR	OE COM		06 MEASURE OF
01 CATEGORY	02 SUBSTANCE NAM	E .	03 CAS NUMBER	04 STORAGE/DISPO			CENTRATION	CONCENTRATION
analyte	aluminum		7429-90-5 7440-38-2	All these substa	 	9.1		ug/kg
analyte	arsenic			were detected in				ug/kg
analyte	barium		7440-39-3	from dry wastewa	ter	82.6		ug/kg
analyte	beryllium		7440-41-7	lagoons.		.44B		ug/kg
analyte	chromium		7440 40 4			25.3		ug/kg
analyte	cobalt		7440-48-4			6.8B		ug/kg
analyte	copper		7440-50-8			556		ug/kg
analyte	lead		7439-92-1			38.9N		ug/kg
analyte	nickel		7440-02-0			22.5B	<u> </u>	ug/kg
analyte	selenium		7782-49-2			.38BW	N	ug/kg
analyte	vanadium		7440-62-2			16.4E		ug/kg
analyte	zinc		7440-66-6			500		ug/kg
ketone	acetone		67-64-1			600		ug/kg
sulfur hydrocarbon halogenated	carbon disulfide		75-15-0			35		ug/kg
hydrocarbon	1,1,1-trichloroet	hane	71-55-6			9		ug/kg
aromatic	toluene		108-88-3			130		ug/kg
V. FEEDSTOCKS	(See Appendix for	CAS Nu	mbers) None					
CATEGORY	01 FEEDSTOCK	NAME	02 CAS NUMBER	CATEGORY	01 FEEDS	STOCK NA	AME 0	2 CAS NUMBER
FDS				FDS				
FDS				FDS				
FDS				FDS				
FDS	<u> </u>			FDS				
	OF INFORMATION (C	ite spec	cific references,	e.g., state files	s, sample and	lysis,	reports)	
FIT files.								
ı								
-								

EPA FORM 2070-13 (7-81)

	POTENTIAL HAZARDOUS WASTE SITE	1. IDENTIFICATION
EPA	SITE INSPECTION REPORT	01 STATE 02 SITE NUMBER
PART 3 - DES	SCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS	IL D980683197
II. HAZARDOUS CONDITIONS AND INCIDENTS	3	
01 X A. GROUNDWATER CONTAMINATION	O2OBSERVED (DATE:)	X POTENTIAL ALLEGED
03 POPULATION POTENTIALLY AFFECTED: 295	04 NARRATIVE DESCRIPTION	
A potential exists for contaminants to aquifer in the area. Water is drawn surface.	o migrate into the upper sand and gravel aquifer from these formations at approximately 50 to 250	or the upper limestone D feet below the ground
01 x B. SURFACE WATER CONTAMINATION	02OBSERVED (DATE:)	X POTENTIAL ALLEGED
03 POPULATION POTENTIALLY AFFECTED: 0	04 NARRATIVE DESCRIPTION	
A potential exists for contamination of Creek borders the southern end of the from the site. Surface drainage on-si of the on-site building.	on-site to migrate to Forked Creek and into the l site and enters the Kankakee River approximatel ite is toward Forked Creek which is located appro	Kankakee River. Forked y 0.5 miles downstream oximately 1,381 feet south
01C. CONTAMINATION OF AIR	02 OBSERVED (DATE:)	POTENTIAL ALLEGED
03 POPULATION POTENTIALLY AFFECTED: 0	04 NARRATIVE DESCRIPTION	
No potential or alleged air contamina	tion threat has been documented at this site.	
01 D. FIRE/EXPLOSIVE CONDITIONS	02 OBSERVED (DATE:)	POTENTIAL ALLEGED
03 POPULATION POTENTIALLY AFFECTED:	0 04 NARRATIVE DESCRIPTION	;
No potential or alleged fire/explosive	e conditions have been documented at this site.	
01 X E. DIRECT CONTACT	O2 OBSERVED (DATE:)	X POTENTIAL ALLEGED
03 POPULATION POTENTIALLY AFFECTED:	2,776 04 NARRATIVE DESCRIPTION	
Because the site is easily accessible where the wastewater was deposited are substances which have migrated outside	, the potential for contamination by direct conta e securely locked, but the potential exists for a e of the lagoon area.	act exists. The lagoons direct contact with the
01 X F. CONTAMINATION OF SOIL	02OBSERVED (DATE:)	X POTENTIAL ALLEGED
03 AREA POTENTIALLY AFFECTED: Unknown		
	cres) of substances away from the secured lagoon area :	into the surrounding soil.
01 X G. DRINKING WATER CONTAMINATION	02 OBSERVED (DATE:)	X POTENTIAL ALLEGED
)3 POPULATION POTENTIALLY AFFECTED:	295 04 NARRATIVE DESCRIPTION	
A potential exists for contaminants to area. Private wells are drilled into	o migrate into the upper sand and gravel aquifer these formations at approximately 50 to 250 feet	or limestone aquifer in the t.
)1 X H. WORKER EXPOSURE/INJURY	02OBSERVED (DATE:)	X POTENTIAL ALLEGED
03 WORKERS POTENTIALLY AFFECTED: 9	04 NARRATIVE DESCRIPTION	
A potential exists for the employees a	at the site to come into direct contact with the	substances on-site.
01 X 1. POPULATION EXPOSURE/INJURY	02 OBSERVED (DATE:)	X POTENTIAL ALLEGED
)3 POPULATION POTENTIALLY AFFECTED:	2,776 04 NARRATIVE DESCRIPTION	
A potential exists for the population on-site. The population within a 1-mi	surrounding the site to come into direct contact ile radius of the site is 2,776.	t with the contamination

	DOSERRATAT II	AZARDOUS WASTE SITE	I. IDENTIFICATION
			01 STATE 02 SITE NUMBER
EPA		SPECTION REPORT HAZARDOUS CONDITIONS AND INCIDENTS	IL D980683197
. 1			
II. HAZARDOUS CONDITIONS	AND INCIDENTS (CONTINUE		A POMOVMINI ALLEGOD
1 X J. DAMAGE TO FLORA		02 OBSERVED (DATE:) X POTENTIAL ALLEGED
4 NARRATIVE DESCRIPTION			
A potential for damage to around the lower perimete	flora exists at this si	te. During the SSI, FIT observed a ons.	reas of stressed vegetation
4			
A1 V V DAVACE MO EXIMA		02 OBSERVED (DATE:) X POTENTIAL ALLEGED
01 X K. DAMAGE TO FAUNA	tanluda nama/a) of anaci	· - · · · · · · · · · · · · · · · · · ·	TOTALIAN REDUCED
4 NARRATIVE DESCRIPTION (
A potential exists for da direct contact with subst	mage to rauna. A deer w ances on-site.	as observed on-site during the FIT	SSI. Fadna may come into
· v			
1 L. CONTAMINATION OF	FOOD CHAIN	02 OBSERVED (DATE:) POTENTIAL ALLEGED
04 NARRATIVE DESCRIPTION			·
· · · · · · · · · · · · · · · · · · ·	ontamination of the food	chain has been documented at this	site.
, no potential of alleged t		onari nas soon accamentos ac unis	
;			
1-1			
1 M. UNSTABLE CONTAINM	ENT OF WASTES	02 OBSERVED (DATE:) POTENTIAL ALLEGED
(Spills/runoff/standing	liquids/leaking drums)		·
03 POPULATION POTENTIALLY	_	04 NARRATIVE DESCRIPTION	
No unstable containment o			ı
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,
01 N. DAMAGE TO OFFSITE	PROPERTY	02 OBSERVED (DATE:) POTENTIAL ALLEGED
4 NARRATIVE DESCRIPTION			
No damage to off-site pro	perty has been documente	d at this site.	
r)			
,			· · · · · · · · · · · · · · · · · · ·
0. CONTAMINATION OF STORM DRAINS, WWT	SEWERS,	02 OBSERVED (DATE:) POTENTIAL ALLEGED
1 NARRATIVE DESCRIPTION			
	contemination of sewers	storm drains or WWFDs has been dos	umanted at this site
No potential of alleged C	Oncamination of severs,	storm drains, or WWTPs has been doo	difference at this site.
,			
P. ILLEGAL/UNAUTHORI	ZED DUMPING	02 OBSERVED (DATE:) POTENTIAL ALLEGED
04 NARRATIVE DESCRIPTION			
No unauthorized dumping h	as been documented at th	is site.	
_ !			
^5 DESCRIPTION OF ANY OTHE	R KNOWN, POTENTIAL, OR P	LLEGED HAZARDS	
fone			
v			
TT MOMENT PODITION DOWN	DESTRUCTION 2 ASS		
III. TOTAL POPULATION POT	BRITABLE AFFECTED: 3,000		
IV. COMMENTS			
lone			
!. J			
'. SOURCES OF INFORMATION	(Cite specific reference	es, e.g., state files, sample anal	ysis, reports)
IT files.			

1	POTENTIAL HAZA	ARDOUS WASTE SIT	B i		TIFICATION
EPA	SITE INSPI	ECTION REPORT		01 STATE	02 SITE NUMBER D980683197
T ⁱ	PART 4 - PERMIT AND	DESCRIPTIVE INF	ORMATION	11,	D980083197
II. PERMIT INFORMATION None -	site is not current	ly in operation.			
01 TYPE OF PERMIT ISSUED	02 PERMIT NUMBER	 	04 EXPIRATION DATE	105 COM	MENTS
(Check all that apply)		ł			
A. NPDES	<u>'</u>	ì	}		
B. UIC					
<u> </u>					
C. AIR	1			1	
D. RCRA					
D. RCRA	· •	İ			
E. RCRA INTERIM STATUS					
F. SPCC PLAN	1	į	ļ	İ	
G. STATE (Specify)					
[
H. LOCAL (Specify)					
					
I. OTHER (Specify)	ì	1]	1	
J. NONE	- 				
		<u></u>	L	L	
III. SITE DESCRIPTION		·			
01 STORAGE/DISPOSAL 02	AMOUNT 03 UNIT OF	MEASURE 04 TREAT	MENT	05	Other
(Check all that apply)		(Chec	k all that apply)		
A. SURFACE IMPOUNDMENT		A. I	NCINERATION		
B. PILES		В. и	NDERGROUND INJECTION	on I	X A. BUILDINGS ON SITE
C. DRUMS, ABOVE GROUND			HEMICAL/PHYSICAL	-	
D. TANK, ABOVE GROUND			IOLOGICAL	_	22
				06	AREA OF SITE
E. TANK, BELOW GROUND			ASTE OIL PROCESSING	3	
F. LANDFILL		F. s	OLVENT RECOVERY	-	51 (Acres)
G. LANDFARM		G. 0	THER RECYCLING/RECO	OVERY	
H. OPEN DUMP		<u> </u>	THER Filtration]	
X I. OTHER Lagoon Unk	nown	i e	(Specify)		
(Specify)				,	
7 COMMENTS					
None					
l ,					
	·····	·····			
IV. CONTAINMENT					
01 CONTAINMENT OF WASTES (Check	one)				
X A. ADEQUATE, SECURE	B. MODERATE	C. INADEQUATE	, POORD. II	NSECURE,	UNSOUND, DANGEROUS
DESCRIPTION OF DRUMS, DIKING,					
Wastewater from the papermakin lagoons was pumped to the Kank	g process was deposit akee River when the	ted in lagoons ti lagoons were ful	hat have clay line: 1.	s. The	water from the
		•			
. '					
V. ACCESSIBILITY					·
/ · · · · · · · · · · · · · · · · · · ·	VEC V NO				·
WASTE EASILY ACCESSIBLE:	YES X NO				
The lagoon area is securely fe	nced. Any access to	o the substances	in the lagoon woul	id be as	a result of
migration off-site via overflo	w.		•		
71. SOURCES OF INFORMATION (Cit	e specific references	s, e.q., state f	iles, sample analys	is. repo	rts)
FIT files.		-,,, scate 1.	, campro energe		
1 .					
1					
j. ,					

'A FORM 2070-13 (7-81)

				T
	POTENTIAL HAZARDON		E	I. IDENTIFICATION
EPA	SITE INSPECTIO		MANAGER PARTS	01 STATE 02 SITE NUMBER D980683197
II. DRINKING WATER SUPPLY	5 - WATER, DEMOGRAPHIC	, AND ENVIRO	MENTAL DATA	
11. DRIBRING WAIDA SUPPLI			·····	<u> </u>
01 TYPE OF DRINKING SUPPLY (Check as applicable)	02 STATUS Unkno	own		03 DISTANCE TO SITE
SURFACE WELL	ENDANGERED	AFFECTED	MONITORED	
COMMUNITY A. B. X	λ	в.	c. x	A. 0.5 (mi)
NON-COMMUNITY C. D. X	D	Е.	F	B. Adjacent (mi)
TTT days and				
111. GROUNDWATER 01 GROUNDWATER USE IN VICINITY (C	hock one)		····	
X A. ONLY SOURCE FOR B. DRI	•	ר. רמאא	ERCIAL, INDUSTRIA	L IRRIGATION D. NOT USED,
DRINKING - (Other	sources available)	(Limit	ed other sources	
COMMER (No ot	CIAL, INDUSTRIAL, IRRIGA her water sources avails	ATION able)		
.02 POPULATION SERVED BY GROUND WA	TER	03 DISTANCE	TO NEAREST DRINK	ING WATER WELL On-site (mi)
04 DEPTH TO GROUNDWATER 05 DIRECT	ION OF GROUNDWATER FLOW	06 DEPTH TO OF CONCE	AQUIFER 07 POTENT	TIAL YIELD 08 SOLE SOURCE AQUIFER
3 to 7 (ft)	Southwest	30		own (gpd) YES X NO
09 DESCRIPTION OF WELLS (Includin	g usage, depth, and loca	l ation relati	ve to population	and buildings)
There are approximately 109 wellimestone aquifer.				
limestone aquifer.	_			
10 RECHARGE AREA		11 DISCHARG	E AREA	
YES COMMENTS Groundwate	r in the area is ed by precipitation.	YES	COMMENTS Ground	water in the area discharges
NONO	ed by precipitation.	NO	THEO CHA VAHVAV	ee River.
IV. SURFACE WATER		I		
01 SURFACE WATER USE (Check one)				
X A. RESERVOIR, RECREATION	B. IRRIGATION, ECONOMIC	ALLY C.	COMMERCIAL, INDUS	FRIAL D. NOT CURRENTLY USED
DRINKING WATER SOURCE	IMPORTANT RESOURCES			
02 AFFECTED/POTENTIALLY AFFECTED NAME:	BODIES OF WATER		AFFECTED	DISTANCE TO SITE
Forked Creek			AFFECIED	Adjacent (mi)
Kankakee River				0.5 (mi)
				(Ri)
V. DEMOGRAPHIC AND PROPERTY INFO	RMATION			
01 TOTAL POPULATION WITHIN	WILES AS 4185 - MUDDE (Į.	TO NEAREST POPULATION
•		3) MILES OF	SITE -	Adjacent (mi)
	,390 C OF PERSONS NO	6,613 OF PERSONS	_	
03 NUMBER OF BUILDINGS WITHIN TWO			CE TO NEAREST OFF	-SITE BUILDING
1,989	(1) 11111111111111111111111111111111111	101 220111	Adjacent	(mi)
				
05 POPULATION WITHIN VICINITY OF	SITE (Provide narrative e.g., rural, villa	description age, densely	of nature of populated urban	ulation within vicinity of site, area)
The land in the vicinity of the	site is primarily rural	with scatte	red industries ne	arby. The population within
1 mile of the site is approximat	ely 2,770.			
l ⁱ				

EPA FORM 2070-13 (7-81)

· · · · <u></u>	POTENTIAL HAZA	RDOUS WASTE SITE	I. IDENTIFICATION			
L EPA	EPA SITE INSPECTION REPORT 01 STATE 02 SITE NUMBER					
	PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA					
VI. ENVIRONMENTAL INFO	ORMATION					
)1 PERMEABILITY OF UNS	ATURATED ZONE (Check one)					
A. 10 ⁻⁶ - 10 ⁻⁸ cm,	/sec <u>X</u> B. 10 ⁻⁴ - 10 ⁻⁶ cm/sec	$-$ C. $10^{-4} - 10^{-3}$ cm/sec	D. GREATER THAN 10 ⁻³ cm/sec			
)2 PERMEABILITY OF BEDI		/				
A. IMPERMEABLE	X B. RELATIVELY IMPERMEAE					
·	$(10^{-4} - 10^{-6} \text{ cm/sec})$	$(10^{-2} - 10^{-4} \text{ cm/s})$	ec) (Greater than 10 ⁻² cm/sec)			
	04 DEPTH OF CONTAMINATED SOIL					
Unknown (ft)	Unknown (ft)	Unknown	- 1			
06 NET PRECIPITATION	07 ONE YEAR 24 HOUR RAINFALL	08 SLOPE DIRECTION OF	SITE SLOPE TERRAIN AVERAGE SLOPE			
2 inches (in)	2.5 (in)	0.3 % Southwest	0.3			
09 FLOOD POTENTIAL SITE IS IN Unknown	n YEAR FLOOD PLAN 10 SITE I Unkn	S ON BARRIER ISLAND, COASTAL	HIGH HAZARD AREA, RIVERINE FLOODWAY			
11 DISTANCE TO WETLANDS	S (5 acre minimum)	12 DISTANCE TO CRITICAL HA	BITAT (of endangered species)			
ESTUARINE	OTHER		(3 (mi)			
A. N/A	_ (mi) B. <u><3</u> (mi) ENDANGERED SPECIES: _	None			
13 LAND USE IN VICINITY	Y					
DISTANCE TO:						
COMMERCIAL/INDUSTR	RESIDENTIAL AREAS; NATI IAL FORESTS, OR WILDLI	FE RESERVES PRI	AGRICULTURAL LANDS ME AG LAND AG LAND			
A.Adjacent (mi	B.Adjacent	(mi) C.Unknown	(mi) D.~0.5 (mi)			
A DESCRIPTION OF SITE	IN RELATION TO SURROUNDING TOP	OCENDAN				
See Appendix A.	IN RELATION TO SURROUNDING TOP	OGRAPHI				
Jes repondent			i			
1,		,				
\						
T						
1						
Ĺ						
VII. SOURCES OF INFORM	MATION (Cite specific reference	s, e.g., state files, sample	analysis, reports)			
FIT files.						
್ರಾ U.S. Geological Survey	,, 1973, Wilmington Quadrangle,	Illinois, 7.5 minute series:	1:24,000.			
1,						
1						
L						
PA FORM 2070-13 (7-81))					

1 _1

I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE 01 STATE 02 SITE NUMBER D0980683197 SITE INSPECTION REPORT EPA PART 6 - SAMPLE AND FIELD INFORMATION II. SAMPLES TAKEN 03 ESTIMATED DATE RESULTS AVAILABLE 02 SAMPLES SENT TO 01 NUMBER OF SAMPLES TAKEN SAMPLE TYPE GROUNDWATER SURFACE WATER WASTE AIR RUNOFF SPILL TCL compounds: MetaTRACE Incorporated, Earth City, MO TAL analytes: Enseco/Rocky Mountain Analytical, Arvada, CO SOIL 6 VEGETATION OTHER III. FIELD MEASUREMENTS TAKEN 01 TYPE (11.7 Lamp) Photo-ionization detector (PID) 02 COMMENTS The background breathing zone reading was 0.9ppm; the on-site breathing zone reading was 0.9 ppm. Radiation monitor The background reading was 0.02 mR/HR; the on-site reading was 0.02 mR/HR Explosimeter 0% explosive atmosphere Oxygen meter The background reading was 21% oxygen; the on-site reading was 21% oxygen. Colorimetric monitoring tubes: HCN monitor No reading was detected. IV. PHOTOGRAPHS AND MAPS 02 IN CUSTODY OF 01 TYPE X GROUND AERIAL Ecology and Environment, Inc. (Name of organization or individual) 03 MAPS X YES 04 LOCATION OF MAPS NO FIT files - Chicago W. OTHER FIELD DATA COLLECTED (Provide narrative description)

VI. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

FIT files

2

		POT	ENTIAL MAXARDOUS	WASTE SITE	I. IDENTI	PICATI	LOM
EPA			SITE INSPECTION	REPORT	01 STATE 0	2 SITE	NUMBER
		P.	ART 7 - OWNER INT	rommation l		73000)212.
II. CURRENT OWNER(S)				PARENT COMPANY (If applicab	10)		
01 NAME C.P. Inorganics		02 D	HB NUMBER	08 HAME		09 D4	+B NUMBER
03 STREET ADDRESS (P.O. BOX, 10 Industrial Avenue	RFD #, ET	rc.)	04 SIC CODE	10 STREET ADDRESS (P.O. BOX,	RFD #, ETC	c.)	11 SIC CODE
05 CITY Joliet	06 STATE	07 Z:	IP CODE	12 CITY	13 STATE	14 ZI	IP CODE
01 NAME		02 D	+B NUMBER	08 MAME		09 D4	+B NUMBER
03 STREET ADDRESS (P.O. BOX,	RFD #, ET	rc.)	04 SIC CODE	10 STREET ADDRESS (P.O. BOX,	RFD #, ETC	c.)	11 SIC CODE
05 CITY	06 STATE	07 Z	IP CODE	12 CITY	13 STATE	14 Z	IP CODE
01 NAME		02 D	+B NUMBER	OB MAME		09 D4	+B NUMBER
03 STREET ADDRESS (P.O. BOX,	RFD #, ET	rc.)	04 SIC CODE	10 STREET ADDRESS (P.O. BOX,	RFD #, ET	c.)	11 SIC CODE
05 CITY	06 STATE	07 Z	IP CODE	12 CITY	13 STATE	14 21	IP CODE
III. PREVIOUS OWNER(S) (Lis	t most re	cent	first)	IV. REALTY OWNER(S) (If applicable; list most recent first)			
01 NAME Diamond International Corpor	ration	02	D+B WIMBER	01 MAME		02 [D+B NUMBER
03 STREET ADDRESS (P.O. Box, Unknown	RFD #, et	(c.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box,	RFD #, etc	c.)	04 SIC CODE
05 CITY Norwalk	06 STATE	€ 07	ZIP CCCE	05 CITY	06 STAT	E 07 2	ZIP CODE
01 NAME Sulfide Division of Johnson Johnson	£.	02	D+B WIMBER	01 NAME		02 1	D+B NUMBER
03 STREET ADDRESS (P.O. Box, Unknown	RFD #, ef	tc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box,	RFD #, etc	c.)	04 SIC CODE
05 CITY	06 STATE	2 07	ZIP CCOE	05 CITY	06 STATI	Б 07 2	ZIP CODE
01 NAME Stonebridge Paper Company (Art Leopold)		02	D+B NUMBER	01 NAME		02 [D+B NUMBER
03 STREET ADDRESS (P.O. Box, Peotone Road			04 SIC CODE	03 STREET ADDRESS (P.O. Box,	RFD #, etc	c.)	04 SIC CODE
05 CITY Wilmington	IL.		ZIP CECE	05 CITY	. 1	1	ZIP CODE
	ite speci	ific	references, e.g.,	, state files, sample analysi	s, reports)	
FIT files.							

EPA FORM 2070-13 (7-81)

	 	POTENTIAL HAZARDOUS	WASTE SITE	1. IDENTIFICATION	
BPA		SITE INSPECTION		01 STATE 02 SITE NUMBER IL D980683197	
		PART 8 - OPERATOR IN	FORMATION	1L D980683197	
II. CURRENT OPERATOR (Provid	e if diffe	erent from owner)	OPERATOR'S PARENT COMPANY	(If applicable)	
01 NAME Same as owner		02 D+B NUMBER	10 NAME	11 D+B WUMBER	
03 STREET ADDRESS (P.O. BOX,	RFD #, E1	TC.) 04 SIC CODE	12 STREET ADDRESS (P.O. BO)	(, RFD +, ETC.) 13 SIC COD	E
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE 16 ZIP CODE	
08 YEARS OF OPERATION 09	NAME OF O	OWNER			
III. PREVIOUS OPERATOR(S) (I	ist most only if di	recent first; pro- lifferent from owner)	PREVIOUS OPERATORS' PARENT	COMPANIES (If applicable)	
01 NAME N/A		02 D+B NUMBER	10 NAME	11 D+B WUMBER	
03 STREET ADDRESS (P.O. Box,	RFD #, et	tc.) 04 SIC CODE	12 STREET ADDRESS (P.O. Box	x, RFD +, etc.) 13 SIC COD	E
05 CITY	06 STATE	5 07 ZIP CODE	14 CITY	15 STATE 16 ZIP CODE	
08 YEARS OF OPERATION 09 NAM	E OF OWNER	ER DURING THIS PERIOD			
01 NAME		02 D+B NUMBER	10 NAME	11 D+B SUMBER	
03 STREET ADDRESS (P.O. Box,	RFD #, et	tc.) 04 SIC CODE	12 STREET ADDRESS (P.O. Box	x, RFD +, etc.) 13 SIC COD	E
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE 16 ZIP CODE	
08 YEARS OF OPERATION 09 NAM	E OF OWNER	ER DURING THIS PERIOD			
01 NAME		02 D+B NUMBER	10 NAME	11 D+B BUMBER	
03 STREET ADDRESS (P.O. Box,	RFD #, •	otc.) 04 SIC CODE	12 STREET ADDRESS (P.O. Box	x, RFD *, etc.) 13 SIC COD	E
05 CITY	06 STATE	5 07 ZIP CODE	14 CITY	15 STATE 16 ZIP CODE	
08 YEARS OF OPERATION 09 NAM	E OF OWNER	ER DURING THIS PERIOD			
IV. SOURCES OF INFORMATION (Cite speci	ific references, e.g.	, state files, sample analys	sis, reports)	
FIT files.					
1					

EPA FORM 2070-13 (7-81)

<u> </u>		POTI	NTIAL HAZARDOUS	WASTE SITE	I. IDENTIF	ICATION
EPA			SITE INSPECTION	REPORT	01 STATE 02	SITE NUMBER 980683197
	PART	9 –	GENERATOR/TRANSI	PORTER INFORMATION	15 D	70003137
111. ON-SITE GENERATOR Not a	pplicable	e				
)1 NAME]	02 D+	B NUMBER			
3 STREET ADDRESS (P.O. BOX, I	RFD #, ET	c.)	04 SIC CODE			
05 CITY	06 STATE	07 :	ZIP CODE			
III. OFF-SITE GENERATOR(S)	Vot appli	cabl	• .			
01 NAME		02 1	D+B NUMBER	01 NAME		02 D+B NUMBER
03 STREET ADDRESS (P.O. Box, 1	RFD #, et	c.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box	, RFD #, etc	.) 04 SIC CODE
_5 CITY	06 STATE	07	ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
1 NAME		02	D+B NUMBER	01 NAME		02 D+B NUMBER
03 STREET ADDRESS (P.O. Box,)	RFD #, et	c.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box	, RFD #, etc	.) 04 SIC CODE
05 CITY	06 STATE	07	ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
IV. TRANSPORTER(S) Not appl	icable.					
01 NAME		02	D+B NUMBER	01 NAME		02 D+B NUMBER
3 STREET ADDRESS (P.O. Box,	RFD #, et	c.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box	, RFD #, etc	.) 04 SIC CODE
5 CITY	06 STATE	07	ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME		02	D+B NUMBER	01 NAME	<u></u>	02 D+B NUMBER
03 STREET ADDRESS (P.O. Box, 1	RFD #, et	c.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box	, RFD #, etc	.) 04 SIC CODE
CITY	06 STATE	07	ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
'. SOURCES OF INFORMATION (C	ite speci	fic	references, e.q.	, state files, sample analys:	is, reports)	L
TT files.						
A FORM 2070-13 (7-81)						

POTENTIAL HAZARDOUS WASTE SITE I. IDENTIFICATION 01 STATE 02 SITE NUMBER D980683197 SITE INSPECTION REPORT EPA PART 10 - PAST RESPONSE ACTIVITIES There were no documented response activities at this site. II. PAST RESPONSE ACTIVITIES 1 A. WATER SUPPLY CLOSED 02 DATE 03 AGENCY 04 DESCRIPTION B. TEMPORARY WATER SUPPLY PROVIDED 02 DATE 03 AGENCY 4 DESCRIPTION 1 C. PERMANENT WATER SUPPLY PROVIDED 02 DATE 03 AGENCY 4 DESCRIPTION 02 DATE D. SPILLED MATERIAL REMOVED 03 AGENCY 4 DESCRIPTION E. CONTAMINATED SOIL REMOVED 02 DATE 03 AGENCY 4 DESCRIPTION ____F. WASTE REPACKAGED 02 DATE 03 AGENCY 4 DESCRIPTION 02 DATE G. WASTE DISPOSED ELSEWHERE 03 AGENCY 104 DESCRIPTION 1 H. ON SITE BURIAL 02 DATE 03 AGENCY 04 DESCRIPTION I. IN SITU CHEMICAL TREATMENT 02 DATE 03 AGENCY 04 DESCRIPTION N/A 1 J. IN SITU BIOLOGICAL TREATMENT 02 DATE 03 AGENCY 04 DESCRIPTION N/A 1 K. IN SITU PHYSICAL TREATMENT 02 DATE 03 AGENCY 4 DESCRIPTION N/A L. ENCAPSULATION 02 DATE 03 AGENCY 4 DESCRIPTION M. EMERGENCY WASTE TREATMENT 02 DATE 03 AGENCY 4 DESCRIPTION N. CUTOFF WALLS 02 DATE 03 AGENCY 1 DESCRIPTION 01 O. EMERGENCY DIKING/SURFACE WATER DIVERSION 02 DATE 03 AGENCY 1 DESCRIPTION 01 P. CUTOFF TRENCHES/SUMP 02 DATE 03 AGENCY DESCRIPTION 01 __Q. SUBSURFACE CUTOFF WALL 02 DATE 03 AGENCY 04 DESCRIPTION

A FORM 2070-13 (7-81)

	POTENTIAL HAZARDOUS WASTE SITE	I. IDENTIFICATION
r [!] EPA	SITE INSPECTION REPORT	01 STATE 02 SITE NUMBER IL D980683197
	PART 10 - PAST RESPONSE ACTIVITIES	TF DA800831A1
II. PAST RESPONSE ACTIVITIES (Cont.	inued)	
1 R. BARRIER WALLS CONSTRUCTED	02 DATE	03 AGENCY
OA DESCRIPTION		
N/A		
1 S. CAPPING/COVERING	02 DATE	03 AGENCY
04 DESCRIPTION		-
N/A		
1 T. BULK TANKAGE REPAIRED	02 DATE	03 AGENCY
4 DESCRIPTION		
N/A		
1 U. GROUT CURTAIN CONSTRUCTED	02 DATE	03 AGENCY
4 DESCRIPTION		
N/A		
1 V. BOTTOM SEALED	02 DATE	03 AGENCY
4 DESCRIPTION	·	
N/A		
01 W. GAS CONTROL	02 DATE	03 AGENCY
4 DESCRIPTION		<u> </u>
N/A		
01 X. FIRE CONTROL	02 DATE	03 AGENCY
4 DESCRIPTION		
N/A		
01 Y. LEACHATE TREATMENT	02 DATE	03 AGENCY
04 DESCRIPTION		
N/A		
vi Z. AREA EVACUATED	02 DATE	03 AGENCY
04 DESCRIPTION		
-N/A		
1. ACCESS TO SITE RESTRICTED	02 DATE	03 AGENCY
04 DESCRIPTION	V2 DATE	US AGENCI
N/A		
2. POPULATION RELOCATED	02 DATE	03 AGENCY
04 DESCRIPTION	VE DEED	
N/A		
. 3. OTHER REMEDIAL ACTIVITIES	02 DATE	03 AGENCY
DESCRIPTION	- 3 0014 1	
No remedial activities were perform	med.	
1	- -	
L !		
<u>.</u> ,		
<u>۔</u>		
II. SOURCES OF INFORMATION (Cite	specific references, e.g., state files, sam	ple analysis, reports)
IT files.		
4 D		
ii		
A FORM 2070-13 (7-81)		

	POTENTIAL HAZARDOUS WASTE SITE	I. IDENTIFICATION
EPA	SITE INSPECTION REPORT	01 STATE 02 SITE NUMBER 1L D980683197
	PART 11 - ENFORCEMENT INFORMATION	
. ENFORCEMENT INFORMATION		
PAST REGULATORY/ENFORCEMENT	ACTION YES X NO	
DESCRIPTION OF FEDERAL, STA	TE, LOCAL REGULATORY/ENFORCEMENT ACTION	
o regulatory/enforcement act		
T COUNCES OF THEODY HOU	City and City and City	
T files.	Cite specific references, e.g., state files, s	sample analysis, reports)
rr rrias.		

PA FORM 2070-13 (7-81)

APPENDIX C

U.S. EPA
IMMEDIATE REMOVAL ACTION
CHECKSHEET

Immediate Removal Action Check Sheet

Fire and Explosion Hazard	High	Moderate	Lov
Flammable Materials $\frac{N/A}{A}$		·	·
ExplosivesN/A			
Incompatable Chemicals NA			
Direct Contact with Acutely Toxic Chemicals			
Site Security #		X	
Leaking Drums or Tanks N/A			
Open Lagoons or Pits #2		X	
Materials on Surface #3		X	
Proximity of Population #4		`	X
Evidence of Casual Site Use #5			X
Contaminated Water Supply			
Exceeds 10 Day Snarl NA			
Gross Taste or Odors NA			
Alternate Water Available NA			
Potential Contamination #6		X	
Is the site abandoned, active, or inactive?			
		L	

- Comments: | SITE IS NOT WHOLLY FENCED OR RESTRICTED
 - 2. LAGOON AREA IS FENCED AND LOCKED.
 - 3. TCL COMPOUNDS AND TAL ANALYTES DETECTED IN SOIL SAMPLES.
 - 4. SITE NEIGHBORS ARE WITHIN 0.5 MILE.
 - 5. NO DOCUMENTED OR OBSERVED EVIDENCE OF CASUAL SITE USE, BUT PROPERTY IS NOT ENTIRELY RESTRICTED.
 - 6. TCL COMPOUNDS AND TAL ANALYTES DETECTED IN SOIL SAMPLES.

APPENDIX D

FIT SITE PHOTOGRAPHS

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 1 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1100

DIRECTION OF PHOTOGRAPH: Northwest

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID
(if applicable):
S1

DESCRIPTION: Soil sample S1, collected at lagoon #1.

DATE: 10/27/87

TIME: 1100

DIRECTION OF PHOTOGRAPH: Northwest

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable):

DESCRIPTION: Perspective photograph of soil sample S1, collected at

lagoon #1.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 2 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1130

DIRECTION OF PHOTOGRAPH: South

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID
(if applicable):
S2

DESCRIPTION: Soil sample S2, collected at lagoon #1.

DATE: 10/27/87

TIME: 1130

DIRECTION OF PHOTOGRAPH: South

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): S2

DESCRIPTION: Perspective photograph of soil sample S2, collected at

lagoon #1.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 3 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1200

DIRECTION OF PHOTOGRAPH: South

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): S3

DESCRIPTION: Soil sample S3, collected at lagoon #2.

DATE: 10/27/87

TIME: 1200

DIRECTION OF PHOTOGRAPH: South

WEATHER CONDITIONS: ~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): S3

DESCRIPTION: Perspective photograph of soil sample S3, collected at

lagoon #2.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION PAGE 4 OF 10

TDD: F05-8709-003 PAN: FILO529SA U.S. EPA ID: ILD980683197

DATE: 10/27/87

TIME: 1230

DIRECTION OF PHOTOGRAPH:

South

WEATHER CONDITIONS:

~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable):

S4

DESCRIPTION: Soil sample S4, collected downgrade of the settling lagoon area.

DATE: 10/27/87

TIME: 1230

DIRECTION OF PHOTOGRAPH: South

WEATHER CONDITIONS: ~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): **S4**

DESCRIPTION: Perspective photograph of soil sample S4.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION PAGE 5 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1300

DIRECTION OF PHOTOGRAPH:

South

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable):

DESCRIPTION: Soil sample S5, collected south of the settling lagoon area.

DATE: 10/27/87

TIME: 1300

DIRECTION OF PHOTOGRAPH: South

WEATHER CONDITIONS: ~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable):

DESCRIPTION: Perspective photograph of soil sample S5.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 6 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1420

DIRECTION OF PHOTOGRAPH: North

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): S6

DESCRIPTION: Soil sample S6, potential background sample.

DATE: 10/27/87

TIME: 1420

DIRECTION OF PHOTOGRAPH:

North

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable):

DESCRIPTION: Soil sample S6 perspective, potential background sample.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 7 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

FILO529SA PAN:

DATE: 10/27/87

TIME: 1330

DIRECTION OF PHOTOGRAPH: East-northeast

WEATHER CONDITIONS: ~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): N/A

DESCRIPTION: Photograph taken from bridge over Forked Creek, showing southern

perimeter of property, old fence boundaries, and Forked Creek.

DATE: 10/27/87

TIME: 1332

DIRECTION OF PHOTOGRAPH: North

WEATHER CONDITIONS: ~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): N/A

DESCRIPTION: Panorama of property, showing fenced lagoon area and on-site

building.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 8 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1350

DIRECTION OF PHOTOGRAPH:

West

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): N/A

DESCRIPTION: Photograph showing fence and gate into lagoon area.

DATE: 10/27/87

TIME: 1400

DIRECTION OF PHOTOGRAPH: North

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): N/A

DESCRIPTION: Photograph showing lagoon with water and on-site building.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 9 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1402

DIRECTION OF PHOTOGRAPH:

West

WEATHER CONDITIONS: ~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): N/A

DESCRIPTION: Lagoon #1.

DATE: 10/27/87

TIME: 1403

DIRECTION OF PHOTOGRAPH: West

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable):

DESCRIPTION: Lagoon #2.

SITE NAME: DIAMOND INTERNATIONAL CORPORATION

PAGE 10 OF 10

U.S. EPA ID: ILD980683197

TDD: F05-8709-003

PAN: FILO529SA

DATE: 10/27/87

TIME: 1340

DIRECTION OF PHOTOGRAPH: Northwest

WEATHER CONDITIONS: ~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): N/A

DESCRIPTION: Lightly wooded area where a deer was sighted.

DATE: 10/27/87

TIME: 1445

DIRECTION OF PHOTOGRAPH: North

WEATHER
CONDITIONS:
~50°F

Sunny, clear

PHOTOGRAPHED BY: M. Nesterenko

SAMPLE ID (if applicable): N/A

DESCRIPTION: Front lawn of facility/northern property boundary.

APPENDIX E

CHEMICAL ANALYSIS DATA

OF
FIT-COLLECTED SAMPLES

APPENDIX E

CHEMICAL ANALYSIS DATA
OF
FIT-COLLECTED SAMPLES

ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415 International Specialists in the Environment

CRL Receipt Date 12-3-87 FIT Receipt Date 1-7-88 Review Completed 1-8-88
TO: Melawre Nosterenko FROM: James Mertes SUBJECT: Diamono International PAN: IL 0529 (1 hour charged for review) Case # 8358
Sample Description
Organics (VOA, ABN, Pest/PCB) Inorganics (Metals, Cyanide)
Low Soil
Low Water Low Water
Drinking Water Drinking Water
Other Other
Project Data Status Completed!!
Incomplete, awaiting low soil organics
FIT Data Review Findings:
Check Data Sheets for Transcription Errors
λ Compounds were detected in sample(s); see enclosed sheet.
Book No. 7 Page No. 75 Date Sampled 10-27-87

1	ኤ
L	Щ
l	Ψ

ccology and environment, inc. chicago, illinois'

CHEMICAL EVALUATION FORM

SITE N	SITE NAME: Diamond International PANE ILO529 54 DATE: 1-8-88									
CASE # 83.58 UNITS- mg/kg (ppm) REVIEWER: J.M.							•			
TOX/ PERS	COMPOUND	CROL	3-5×CRDL	MER 200		596	597	578	599	
	ALUMINUM			1610	UZO	1	3020	1	2250	
	ANTIMONY									
	ARSENIC			1.2 BW	9./	40.7B	4.18s	3.085	385	
	BARIUM			22.5 B		'		52.0B	1	
	BERYLLIUM				.44B					
	CADMIUM	-					-			·
	CHROMIUM			3.0	<i>8</i> .8	<i>25</i> .3	10.3	7.5	4.1	
	COBALT				6.88					
	COPPER			/3.0	<i>1</i> 0.8	556	161	112	7.5	
	LEAD			6.8 SN	/2.3 N	38.9 N	Z0.2N	9.8N	681	
	MERCURY									
	NICKEL			2.2 B	7.9 B	22.5B	7.18	5.0B	3.713	
	SELENIUM				.38 BW/	/		·		
	SILVER									;
	THALLIUM									
	TIN									
	VANADIUM			3.4 <i>BE</i>	16.4E	10.9 BE	8.0 BE	7.1BE	5.4 BE	
	ZINC			17.0	28.1	5∞	147	55.D	44.8	
	CYANIDE									

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V

ATE:	•
JBJECT:	Review of Region V CLP Data Received for Review on 12-3-87
20M:	Curtis Ross, Director (5SCRL) Central Regional Laboratory
) 	Data User: FIT
	We have reviewed the data for the following case(s).
1	SITE NAME: DIAMOND INTERNATIONAL SMO case No. 8358
•	EPA Data Set No. SF 4568 No. of Samples: 6 Numbers Y905 C72100
J	CRL No. 88FN04S44 - 549
ī	SMO Traffic No. MER596 - 599, 200, 201 Hrs. Required
j	CLP Laboratory: RMAL for Review: 4
i.	Following are our findings:
3.	This review covers six low soil samples analyzed for metals and cyanide.
	The matrix spike recovery for Sb(56.8%) and Se(72.7%) indicate a low bias and the detection limits may be elevated(UJ). The matrix spike recovery for Pb(48.8%) indicates a low bias and the data are estimated(J). The matrix spike recovery for Tl(419.3%) indicates a high bias and the data are acceptable.
י.	Serial dilution for $K(11.6\%)$ and $\P(16.7\%)$ indicate interference and the results are estimated(J).
1	All QC data for Hg and CN are acceptable.
i	
1	Uniston Vygeswarapre.
I	12-31-87
	 () Data are acceptable for use. (×) Data are acceptable for use with qualifications noted above. () Data are preliminary - pending verification by Contractor Laboratory. () Data are unacceptable.
	cc: Duame Geuder, Quality Assurance Officer, EPA Support Services James Petty, Chief Quality Assurance Research, EMSL, Las Vegas 1

FPA FORM 1320-6 (Rev. 5/87)

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

ab	Name:	ROCKY MO	DUNTAIN ANALYTIC	<u>AL</u> Co	ntract	: <u>68-01-747</u>	6			
ab	Code:	ENSECO	Case No.:	8358 SA	S No.:	·	SDG	No.:	MER2	200
WO	No.:	7/87								
ļ			A Sample No.		Lab	Sample ID.				
"			<u>MER200</u> MER200D		-					
.i		Ī	IER200S		_					
			<u>1ER201</u> 1ER596							
4	•	- <u>1</u>	ÆR597							
i i			<u>1ER598</u> 1ER599							
II,		-								
j		-				· · · · · · · · · · · · · · · · · · ·				
		-								
1		-								
		•								
١		-			<u>۔۔۔</u>					
I		-								
,		-	· · · · · · · · · · · · · · · · · · ·		_					
		•								•
_1		-								
1		_		_ •						
jer	e ICP	interele	ment corrections	applied?	٠			Yes/N	10 <u>}</u>	YES
der			nd corrections a					Yes/N	io j	<u>YES</u>
í	If y appl	es-were : ication (raw data generat of background co	ed before rrections?				Yes/N	10 1	<u>OV</u>
	ments:		•					•		
	6 LOW		R TOTAL METALS A				-			
	<u>INTERF</u> INTERF	ERENCE O	N SERIAL DILUTIO USPECTED FOR THA	N NOTED FOR	R POTAS	<u>SIUM AND VA</u> ER200	NAD:	IUM		
1	RMA OC									
com he	puter Labor	readable	ta contained in data submitted nager or the Man	on floppy of	diskett	e have beer	ı au	thoriz	e zed h	эу
		213114.04.		Lab Mai	nager:					
1					Date:	12/18/87	•			
,				OVER PAGE -	'		_		. /07	
				OVER PAGE .	- TU				7/87	

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

		·-·-	
Lab Name: <u>ROCKY MOUN</u>	TAIN ANALYTICAL	Contract: <u>68-01-74</u>	MER200
Lab Code: <u>ENSECO</u>	Case No.: <u>8358</u>	SAS No.:	_ SDG No.: MER200
Matrix (soil/water):	SOIL	Lab San	mple ID:
Level (low/med):	LOW	Date Re	ecieved: <u>10/28/87</u>
e a-1;	00.1		

* Solids: <u>92.1</u>

					1
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	1610	-		<u></u>
7440-36-0	Antimony -	6.7	ប៊	N	P
7440-38-2	Arsenic -	1.2	В	W	F
7440-39-3	Barium	22.5			
7440-41-7	Beryllium	0.22_	Ū		P
7440-43-9	Cadmium	1.1	<u> </u>		P
7440-70-2	Calcium	731	В		P
7440-47-3	Chromium	3.0			P
7440-48-4	Cobalt	1.3	<u>Ū</u>		P
7440-50-8	Copper	13.0	_		P
7439-89-6	Iron	2480			P
7439-92-1	Lead	6.8		SN	F
7439-95-4	Magnesium	341	B		P
7439-96-5	Manganese	73.9			P
7439-97-6	Mercury	0.11_	<u>U</u>		CV
7440-02-0	Nickel	2.2	B		P
7440-09-7	Potassium	214	B	<u>E</u>	P
7482-49-2	Selenium_	0.22	<u>U</u>	N	CV P P F P
7440-22-4	Silver	1.1	U		P
7440-23-5	Sodium	326	U	<u> </u>	P F
7440-28-0	Thallium	2.2		EN	F
7440-62-2	Vanadium_	3.4	B	E	P P
7440-66-6	Zinc	17.0			P
	Cyanide_	0.54	U	l	AS
			 		l

Col Col	or Before or After:	BROWN BROWN			Texture: Artifacts:	MEDIUM
	ments: THALLIUM	VALUE REPORTED	AT ADDITIONAL 5X	DILUTION		·
I						

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>ROCKY MOUN</u>	TAIN ANALYTICAL	Contract: <u>68-01-7476</u>	MER201
Lab Code: ENSECO	Case No.: <u>8358</u>	_ SAS No.:	SDG No.: MER200
Matrix (soil/water):	SOIL	Lab Sample	e ID:
Level (low/med):	LOW	Date Reci	eved: <u>10/28/87</u>
		•	

% Solids:

84.3

			_		
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	6420			<u>q</u>
7440-36-0	Antimony -	7.4	<u>u</u>	N	P
7440-38-2	Arsenic	9.1			F
7440-39-3	Barium	82.6			P
7440-41-7	Beryllium	0.44	B		P
7440-43-9	Cadmium	1.2	<u></u>		P
7440-70-2	Calcium	1890	[_		P
7440-47-3	Chromium	8.8	-		P
7440-48-4	Cobalt	6.8	B		P
7440-50-8	Copper	10.8	-		P
7439-89-6	Iron	10200			P
7439-92-1	Lead	12.3	_	N	F
7439-95-4	Magnesium	1510	-		
7439-96-5	Manganese		-	}	P
7439-97-6	Mercury	0.12	֓֞֞֞֞֞֞֓֓֓֞֞֞֞֞֞֞֞֞֞		CV
7440-02-0	Nickel	7.9	B		P
7440-09-7	Potassium	589	ΙĒ	E	P
7482-49-2	Selenium	0.38		WN	CV P P F
7440-22-4	Silver	1.2	Ū		P P
7440-23-5	Sodium	356	Ū		P
7440-28-0	Thallium	0.47	<u>u</u>	N	F
7440-62-2	Vanadium	16.4	IΞ	N E	F P P
7440-66-6	Zinc	28.1			
	Cyanide_	0.59	Ū		<u>AS</u>
	l		 	l	l

	Before: After:	BROWN BROWN	Clarity Clarity	Before: After:	 Texture: Artifacts:	MEDIUM
Commen	nts:					
1						
. —						

INORGANIC ANALYSIS DATA SHEET

EPA	SAMPLE	NO.
-----	--------	-----

	na zv. ana rymioa i	Contract: 60-01-7476	MER596
Lab Name: ROCKY MOUN	TAIN ANALITICAL	Contract: <u>68-01-7476</u>	
Lab Code: ENSECO	Case No.: <u>8358</u>	SAS No.:	SDG No.: MER200
Matrix (soil/water):	SOIL	Lab Sample	e ID:
Level (low/med):	LOW	Date Reci	eved: <u>10/28/87</u>
% Solids:	30.1		

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-95-4 7439-96-5	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	4520 20.6 2.7 40.7 0.66 3.3 4130 25.3 4.0 556 7700 38.9 2160 93.3		Q N W	
7439-97-6 7440-02-0 7440-09-7 7482-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6	Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	0.33 22.5 451 0.66 3.3 997 1.3 10.9 500 1.7		E N WN E	CIP P F P P S

Color	Before: After:	GREY BROWN	Clarity Clarity	Before: After:	 Texture: Artifacts:	MEDIUM
Commer	nts:				 	
-, -						

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab	Name:	ROCKY MOUNTA	AIN ANALYT	ICAL Con	tract:	68-01-7476	MER59	7_
Lab	Code:	ENSECO	Case No.:	8358	SAS No	o.:	SDG No.:	MER200

Matrix (soil/water): SOIL

Lab Sample ID: ____

Level (low/med):

LOW

Date Recieved: 10/28/87

% Solids:

68.3

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	3020			<u>P</u>
7440-36-0	Antimony_	9.1	U	N S	<u>P</u>
7440-38-2	Arsenic	4.1	<u>B</u>	<u>S</u>	<u>F</u>
7440-39-3	Barium	47.0	<u>B</u>		P
7440-41-7	Beryllium	0.29			의의되의의의의
7440-43-9	Cadmium_	1.5	<u>U</u>		<u>P</u>
7440-70-2	Calcium_	1330	<u>B</u>		P
7440-47-3	Chromium_	10.3	_		
7440-48-4	Cobalt	1.8	ַ		의의 되
7440-50-8	Copper	161	_		<u>P</u>
7439-89-6	Iron	6430	_		<u>P</u>
7439-92-1	Lead	20.2	_	N	<u>F</u>
7439-95-4	Magnesium	1050	B		P
7439-96-5	Manganese	28.2	 _		
\7439 - 97-6	Mercury	0.15	<u>U</u>		CV
7440-02-0	Nickel	7.9	B		<u>P</u>
7440-09-7	Potassium	226	B	<u>E</u>	P P F
7482-49-2	Selenium_	0.29	U	N	F
7440-22-4	Silver	1.5	U		P
7440-23-5	Sodium	439	U		P
7440-28-0	Thallium	0.59		WN	P F P P
7440-62-2	Vanadium_	8.0	B	<u>E</u>	<u>P</u>
7440-66-6	Zinc	147	 _		
	Cyanide	0.73	Ū		AS
	l		 _		l

Color	Before:	BROWN BROWN	Clarity E	Before: After:	 	COARSE
	ents: RSENIC VA	LUE IS DETERMI	NED BY MSA	1	 	
_						

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab	Name:	ROCKY MOUNT	TAIN ANALYTI	CAL Con	tract:	68-01-7476		MER5	98_
Lab	Code:	ENSECO	Case No.:	8358	SAS No	.:	SDG	No.:	MER200
Matr	cix (so	oil/water):	SOIL			Lab Sample	≥ ID:		
Leve	el (lov	w/med):	LOW			Date Recie	eved:	10/	28/87
9 Sc	olide.		77.8						

					1
CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	2420	-		-
7440-36-0	Antimony	8.0	1	N	p
7440-38-2	Arsenic	3.0	품	N S	두
7440-38-2	Barium	52.0	품		P
7440-41-7	Beryllium	0.26			
7440-43-9	Cadmium	1.3	퓼		P
7440-70-2	Calcium	514	품		P
7440-47-3	Chromium	7.5	_		-
7440-48-4	Cobalt	1.5	$\overline{\mathbf{U}}$		5
7440-50-8	Copper	112	_		<u> </u>
7439-89-6	Iron	5380	-		<u>+</u>
7439-83-6	Lead	9.8	-	N	뉴
7439-95-4	Magnesium	557	₫	<u></u>	5
7439-96-5	Manganese	22.9	۳.		5-
7439-97-6	Mercury	0.13	177		
7440-02-0	Nickel	5.0	旨		5
7440-02-0	Potassium	243	吕	E	듬
7482-49-2	Selenium	0.26	片	WN	
7440-22-4	Silver	1.3	片	1111	5
7440-23-5	Sodium	386	∺		1 5
7440-23-3	Thallium	0.51	片	WN	-
7440-28-0	Vanadium_	7.1		E	() () () () () () () () () () () () () (
7440-62-2	Zinc	55.0	=	<u> </u>	5
1/440-00-0-	Cyanide	0.64	፱		AS
	cyanine		ᆸᅩ	·	<u> </u>
I	i	h	1		

	Before: After:	BROWN BROWN	Clarity Before: Clarity After:	 Texture: Artifacts:	MEDIUM
Commer ARS		LUE IS DETERMI	NED BY MSA	 	

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: ROCKY MOUN	rain analytical c	contract: <u>68-01-7476</u>	MER599
Lab Code: ENSECO	Case No.: <u>8358</u>	SAS No.:	SDG No.: MER200
Matrix (soil/water):	SOIL	Lab Sampl	e ID:
Level (low/med):	LOW	Date Reci	eved: <u>10/28/87</u>
	0.0	•	

1% Solids: <u>86.9</u>

			_		
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	2550	-		<u>P</u>
7440-36-0	Antimony_	7.1	ਧ	N	P
7440-38-2	Arsenic -	3.8		N S	F
7440-39-3	Barium	29.8	B		P
7440-41-7	Beryllium	0.23			P
7440-43-9	Cadmium	1.2	ប		<u>P</u>
7440-70-2	Calcium	1790	_		P
7440-47-3	Chromium	4.1			P
7440-48-4	Cobalt	1.4	Ū		P P P
7440-50-8	Copper	7.5	_		P
7439-89-6	Iron	3260			P
7439-92-1	Lead	6.8	_	N	F
7439-95-4	Magnesium	768	B		P P
7439-96-5	Manganese	131	i '		P
7439-97-6	Mercury	0.12	<u>u</u>		CV
7440-02-0	Nickel	3.7	B		P
7440-09-7	Potassium	416	B	E	<u>P</u>
7482-49-2	Selenium	0.23	U	WN	CV P P F
7440-22-4	Silver	1.2	U		<u> P</u>
7440-23-5	Sodium	345	Ū		P
7440-28-0	Thallium	0.46		WN	P F P
7440-62-2	Vanadium_	5.4	B	<u>E</u>	P
7440-66-6	Zinc	44.8			P
	Cyanide	0.58	Ū	l	AS
	l		<u> </u>		
. — — — — —	. ————	. — — — — — — — — — — — — — — — — — — —			

color	Before:	BROWN BROWN	Clarity B Clarity A	efore: fter:	 Texture: Artifacts:	COARSE
	ents: RSENIC VA	LUE IS DETERMI	NED BY MSA	<u>. </u>	•	

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL

Contract: <u>68-01-7476</u>

Lab Code: ENSECO Case No.: 8358 SAS No.: ____ SDG No.: MER200

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Con	nt:	inuing Cal Blank (ug,	ib;	ration)	С	Prepa- ration BLANK	c	M
Migrare	(ug/b)	_	1	C	2	C	3	۲	PITANY	4	M
Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium	31.0 3.0 1.0 5.0 92.0 5.0 6.0 9.0 31.0 28.0 90.0		20.0 31.0 3.0 1.0 5.0 92.0 5.0 6.0 9.0 31.0 28.0 90.0		20.0 31.0 3.0 1.0 5.0 92.0 5.0 6.0 9.0 31.0 28.0 90.0		20.0 31.0 3.0 1.0 5.0 92.0 5.0 6.0 9.0 31.0 28.0		7.6 6.2 0.60 0.20 1.0 18.4 1.0 1.2 1.8 6.2 5.6 18.0		P P P P P P P P P P P P P P P P P P P
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	5.0 7.0 111 5.0 1500 13.0		5.0 7.0 111 5.0 1500 2.0 13.0		5.0 7.0 111 5.0 1500		5.0 7.0 111 5.0 1500 2.0 13.0		1.0 1.4 22.2 1.0 300 0.40 2.6		P P P P P P P P P P P P P P P P P P P

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

Lab Code: ENSECO Case No.: 8358 SAS No.: ____ SDG No.: MER200

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Cor 1	nt: C	inuing Cal: Blank (ug, 2			С	Prepa- ration BLANK (=	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	4.0	 	4.0		4.0		4.0	_ _ _ _ _ _ _ _ _			F
Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	0.2	<u> </u>	0.2	<u>a - 121 - 121 - 1</u>	0.2	- <u>U</u> - <u>U</u> -	1.0	- <u>U</u>	0.10	- <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	F CV
Selenium_ Silver_ Sodium_ Thallium_ Vanadium_ Zinc_ Cyanide_	2.0	- [건 - [건	2.0		2.0	<u> </u>	2.0			<u> </u>	F F AS

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

Lab Code: ENSECO Case No.: 8358 SAS No.: SDG No.: MER200

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Cor 1	nti C	inuing Cal: Blank (ug, 2	lbi /L; C	ration) 3	С	Prepa- ration BLANK	С	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide			1.0								

3 BLANKS

ab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

Tab Code: ENSECO

Case No.: 8358 SAS No.: _____ SDG No.: MER200

Preparation Blank Matrix (soil/water): SOIL

Initial Calib. Continuing Calibration Prepa- Blank Blank (ug/L) ration Analyte (ug/L) C 1 C 2 C 3 C BLANK	С	М
Aluminum		

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

Lab Code: ENSECO Case No.: 8358 SAS No.: ____ SDG No.: MER200

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L) C		ntinuing Blank C 2	(ug/L)	ation 3	С	Prepa- ration BLANK	С	м
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium									
Cadmium_Calcium_Chromium_Cobalt_Copper_Iron								- - - -	
Lead_ Magnesium Manganese Mercury_		0.2				- - -		- - -	
Nickel Potassium Selenium Silver								- - -	
Sodium Thallium Vanadium Zinc Cyanide								 - - 	
								_	

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

MER200

Lab Code: ENSECO

Case No.: <u>8358</u>

SAS No.: _____

SDG No.: MER200

Matrix (soil/water): SOIL

Level (low/med): LOW

Concentration Units (ug/L or mg/kg dry weight): MG/KG

									_	
	Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	&R	Q	м
j	Aluminum		1600		1610	<u> </u>	0.0	0.0	-	NR
ı	Antimony	75-125	61.9	_	6.7	ប៊	109	56.8	N	P
٦	Arsenic	75-125	9.2	-	1.2	B	8.7	92.0		F
	Barium	75-125	468		22.5		434	102.6		NR P F P
اٰ	Beryllium	75-125	10.5		0.22	Ū	10.9	96.3	_	P
ı	Cadmium	75-125	10.2		1.1	<u>Ū</u>	10.9	93.6	_	P P NR
1	Calcium		717	B	731	B	0.0	0.0	_	NR_
١	Chromium_	75-125	47.2	_	3.0	_	43.4	101.8	_	P
1	Cobalt	75-125	116	_	1.3	$\overline{\underline{\mathbf{U}}}$	109	106.4	_	P P
٦ [Copper	75-125	64.5	_	13.0	۱_	54.3	94.8	_	<u>P</u>
	Iron		2500	_	2480	 	0.0	0.0	_	NR
╛┃	Lead	75-125	115	=	9.2	B	109	97.1	—	P NR
١	Magnesium		342 194	B	341 73.9	₽	109	$\begin{array}{r} 0.0 \\ 110.2 \end{array}$	-	P
٦	Manganese Mercury	75-125 75-125	0.54	-	$\frac{-3.9}{0.11}$	=	0.5	108.0	-	CV
	Nickel	75-125 75-125	117	-	2.2	旨	109	105.3	-	P
_ [Potassium	72-123	245	B	214	旨	0.0	0.0	-	NR
1	Selenium	75-125	1.6	2	0.22	Ιñ	2.2	72.7	N	F
-	Silver	75-125	10.8	-	1.1	Ū	10.9	99.1	=	P
_!	Sodium		713	B	326	Ū	0.0	0.0	-	NR
	Thallium	75-125	45.7	_	2.2	Ū	10.9	419.3	N	F
1	Vanadium -	75-125	111		3.4		109	98.7	I_	NR F NR F P
	Zinc	75-125	122		17.0	_	109	96.3	I_	
_'	Cyanide	75-125	4.1	_	0.54	$\overline{\underline{v}}$	5.4	75.9	_	AS
, [l		 _		 _	l		I _	ll

Comments:

ARSENIC AND SELENIUM MATRIX SPIKE RESULTS ARE DETERMINED BY MSA
THALLIUM SAMPLE RESULT IS REPORTED AT AN ADDITIONAL 5X DILUTION
LEAD SAMPLE AND MATRIX SPIKE RESULT IS DETERMINED BY MSA

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

1			50 5 0 50 50 50 50 50 50 50 50 50 50 50 50 50			MEDO	0
~ab	Name:	ROCKY MOUNT	AIN ANALYTICAL	Contract: <u>68-01-</u>	7476	MER20	
Lab	Code:	ENSECO	Case No.: <u>8358</u>	SAS No.:		SDG No.:	MER200
lati	cix (s	oil/water):	SOIL	L	evel	(low/med):	TOM
1							

Concentration Units (ug/L or mg/kg dry weight): MG/KG

		 								
Analyte	Control Limit %R	Spiked Result	Sample (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
Aluminum									_	
Antimony_						_			_	
Arsenic				_		_			<u> </u>	
Barium_ Beryllium				_		-			-	
Cadmium				-		_			-	
Calcium				_		<u> </u>				
Chromium_				 _		_]]		
Cobalt		l		_		-			-	
Copper				-		-			-	
Lead	75-125		8.9		6.8	_	4.3	48.8	N	F
Magnesium				_		_		 	_	
Manganese Mercury				-		-]	-	
Nickel				_					_	
Potassium				_		1=				
Selenium_ Silver				_		-			_	
Sodium				-		-			-	
Thallium				_		_				
Vanadium -				 _						
Zinc				 		-		 	-	
Cyanide				-		-	l		-	
	! ————	ł —————		i	I	I	I	1	1 —	

Co	mments:
	ARSENIC AND SELENIUM MATRIX SPIKE RESULTS ARE DETERMINED BY MSA
1	THALLIUM SAMPLE RESULT IS REPORTED AT AN ADDITIONAL 5X DILUTION
."	LEAD SAMPLE AND MATRIX SPIKE RESULT IS DETERMINED BY MSA

POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

				MER200
Lab	Name:	ROCKY MOUNTAIN ANALYTICAL	Contract: <u>68-01-7476</u>	

Lab Code: ENSECO Case No.: 8358 SAS No.: ____ SDG No.: MER200

Matrix (soil/water): SOIL Level (low/med): Low

Concentration Units: ug/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead		Result (SSR)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result (SR)	CIBILLIA	570	88.0	Q	M NA PARKANANANANANANANANANANANANANANANANANANA
Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide									

Coi	mments:			•	
					
					

6 DUPLICATES

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

Lab Code: ENSECO Case No.: 8358 SAS No.: ____ SDG No.: MER200

Matrix (soil/water): SOIL Level (low/med): Low

Concentration Units (ug/L or mg/kg dry weight): MG/KG

6 DUPLICATES

EPA SAMPLE NO.

Lab	Name:	ROCKY MOUN	TAIN ANALYTICAL	Contract:	68-01-7476	MER2	00_
Lab	Code:	ENSECO	Case No.: 8358	SAS No	o.:	SDG No.:	MER200

Matrix (soil/water): SOIL

Level (low/med): LOW

* % Solids for Sample: 92.1

% Solids for Duplicate: 91.9

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	Control							
Analyte	Limit	Sample (S)	C	Duplicate (D)		RPD	Q	M
Aluminum			- 1		<u>-1</u>]]	1-	
Antimony_			-		-		-	
Arsenic			-		-		-	
Barium			-		-		-	
Beryllium								
Cadmium								
Calcium								
Chromium								
Cobalt		\	_	<u> </u>	_		_	
Copper			_		_		-	
Iron			1-1		-		-	
Lead		6.8	-	6.5	-	4.5	1-	F
Magnesium			1-1		-			
Manganese			1-1				-	
MercuryNickel			 - 		-		-	
Potassium			-		-		1-	
Selenium			-		-		 -	
Silver			1-1				-	
Sodium			1-1		-		-	
Thallium					-		-	
Vanadium -						1	1-	
Zinc								
Cyanide_								
\	l		1_1	l	_	11	1_	

LABORATORY CONTROL SAMPLE

ab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

Lab Code: ENSECO Case No.: 8358 SAS No.: ____ SDG No.: MER200

Solid LCS Source: EMSL-LV

Aqueous LCS Source: EMSL-LV

Analyte	Aque True	eous (ug/l Found	L) %R(1)	True	Sol Found	lic	d (mg/kg) Lin	nits	% R
Aluminum_				325	395		225	424	122
Antimony_				211	259	_	127	294	123
Arsenic						-		40.0	
Barium				<u>4.8</u> 19.4	<u>5.7</u> 20.7	-	0.0	40.0	119 107
Cadmium				45.4	42.5	-	$\frac{16.5}{35.7}$	22.3 55.1	107
Calcium				196200	187000	-	166800	225600	93.6 95.3
Chromium				99.6	97.7	-	79.2	120	98.1
Cobalt				144	143	_	125	162	99.3
Copper				6910	7170		6006	7820	104
Iron				22430	21100	_	17770	27080	94.1
Lead				236	216	Ì_,	188	285	91.5 102
Magnesium				118100	120000	_	100400	129900	102
Manganese				208	222	_	177	239	107
Mercury Nickel				60.9	57.7	-	40 3	72.6	94.7
Potassium				50.0	97.4	-	49.2	1000	195
Selenium						-			195
Silver				22.2	26.6	-	15.5	29.0	120
Sodium				50.0	26.6 53.5		0.0	1000	120 107
Thallium_									
Vanadium_				65.8	68.2	_	51.7	79.9	104
Zinc				187	159	 	138	236	85.0
1 Cyanitae —						 			
1			l	l		۱	l ————	l	l¹

7 LABORATORY CONTROL SAMPLE

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-01-7476

Lab Code: ENSECO Case No.: 8358 SAS No.: ____ SDG No.: MER200

Solid LCS Source: EMSL-LV

Aqueous LCS Source: EMSL-LV

Analyte	Aque True	eous (ug/ Found	L) %R(1)	True	Sol Found	id C	(mg/kg) Lin	nits	&R
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium				917	688		635	1199	75.0
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel					237		188	285	100
Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide				39.2	34.1 ————————————————————————————————————	11111111		59.4	87.0 109

7 LABORATORY CONTROL SAMPLE

Lab Name:	ROCKY MOUNT	TAIN ANALYTICAL	Contract: 68-01	<u>-7476</u>
Lab Code:	ENSECO	Case No.: <u>8358</u>	SAS No.:	SDG No.: MER200
solid LCS	Source: £	m5L-LV		
Aqueous La	CS Source: _		·	

· ~ ~	Analyte	Aque True	eous (ug/) Found	L) %R(1)	True	So! Found	lid C	l (mg/kg) Lin	nits	%R
	Aluminum			т						
	Antimony_						-			
,	Arsenic		<u> </u>				-			
	Barium			I ——			-			
	Beryllium						-			
	Cadmium	· 					-			
	Calcium_]		-			
	Chromium						1-1			
	Cobalt						-			
	Copper						-			
٦	Iron						-			
1	Lead						-			
	Magnesium						l-I			
	Manganese	<u>-</u>					-			
13	Mercury				12.7	12.0		8.5	17.0	94.5
į	Nickel						1=1			
	Potassium						_			
	Selenium_						1_1			
	Silver						1=1			
-1	Sodium						_			
	Thallium_						_			
	Vanadium_		[[_[
	Zinc			 			[_]			
	Cyanide_			·			_			
1				·			1 1		1	

ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415 International Specialists in the Environment

CRL Receipt Date	2388 Revie	w Completed 2/9/88
TO: Mederalo, Melanie FROM: Loretta Guzdziol SUBJECT: Diamond International PAN: IL0529 (1 hour charged for rev	vie w) Case	#_ 8358_
Sample Description		
Organics (VOA, ABN, Pest/PCB)	Inorganics	(Metals, Cyanide)
# 6 Low Soil	ŧ	Low Soil
Low Water		Low Water
Drinking Water		Drinking Water
Other		Other
Project Data Status Completed!!	Ŋ.	
Incomplete, awaiting		
FIT Data Review Findings: See reviewer Summary. (+ab)		
Check Data Sheets for Transcription Err	ors	
Compounds were detected in s	ample(s); se	e enclosed sheet.
Book No. 7 Page No. 74	Date Sa	mpled 10/27/87

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION \boldsymbol{v}

DATE: //	28/88
SUBJECT:	Review of Region V CLP Data Received for Review on
FROM:	Curtis Ross, Director (5SCRL) Patiety Units to Central Regional Laboratory
то:	Data User: FIT
	eviewed the data for the following case(s). : Diamond International SMO Case No. 8358
EPA Data	No. of D.U./Activity Set No. SF4568 Samples: 6 Numbers Y905/C721ZZ
CRL No	88FN04S44 - S49
SMO Traff	ic No. EQ257 - 262
CLP Labor	Hrs. Required for Review: 6
Following	are our findings: J.C. By Blad 1 22/85
Data () Data Labo	are acceptable for use. are acceptable for use with qualifications noted above. are preliminary - pending verification by Contractor bratory. are unacceptable.
	ne Geuder, Quality Assurance Officer, EPA Support Services es Petty, Chief Quality Assurance Research, EMSL, Las Vegas
EPA FORM	1320-6 (Rev. 5/87)

This review covers 6 soil samples for which full organic analysis was requested. This case was received by Metatrace Labs on October 27, 1987. All samples were screened and run as low concentration samples.

- A. Holding Times Acceptable
- B. Surrogates Acceptable
- C. MS/MSD Acceptable

Recovery

VOA - O Outside QC limits B/N - 2 Outside QC limits Acid - 4 Outside QC limits Pest - 9 Outside QC limits

RPD's -

VOA - 1 Outside QC limits
B/N - 1 Outside QC limits
Acid - 0 Outside QC limits
Pest - 2 Outside QC limits

- D. Method Blank Acceptable No compounds were detected.
- E. Calibrations Acceptable Compounds that are outside the specification are listed on the calibration outlier form.
- F. Tunings Acceptable
- G. Pesticides Acceptable
 Linearity Acceptable
 DBC Shift Acceptable
 DDT retention time Acceptable

BRJ FOR J.C.

USER INFORMATION SHEET

Diamond International Case # 8358

Metatrace Labs

January 12, 1988 Reviewed by Lloyd Collins

These samples contained methylene chloride, acetone, carbon disulfide, 1,1,1-trichloroethane, toluene, di-n-butylphthalate, butylbenzyphthalate and bis(2-ethylhexyl)phthalate. There were no positive results in the pesticide fraction. Nine out of twelve matrix spikes and matrix spike duplicates were outside the QC limits, however since there were no positive hits in the pesticide fraction, the data quality was not affected.

BN FOR JC 1/12/88

(--: #8758 SIZZ Dinmond Intl UNITS DE TI HHIT COMPOUND EG257 EG360 26.25.7 20261 direthyl phthalata acenepthylene 3-nitrosniline acenephthene 2,4-dinitrophenol 4-nitrophenol dibenzofuran 7,4-dinitrotoluene ' 2,6-dinitrotoluene diethylphthalate 4-chlorophenyl-phenylether fluorene 4-nitrosniline 4,6-dinitro-2-methylphenol N-nitrosodiphenylamine 4-bromophenyl-phenylether hexachlorobenzena pentachlorophenol phenanthrene anthracene 13000 di-n-butylphthalata 450C 77: c -well i fluoranthene benzidine PATRUE butylbenzylphthalate 7300 36000 4.7 3,3'-dichlorobenzidine benzo(a)anthracena bis (2-ethy lhexyl) phthalate HICE. Tice 5000 33CCJ chrysene di-n-octylphthelete benzo(b&k)fluoranthena benzo(a)pyrene Indeno(1,2,3-od)pyrene dibenzo(a,h)anthracene benza(g,h,1)perylene alpha-8HC beta-BHC delta-BHC games-BHC(lindane) heptechlor eldrin heptachlor epoxide endosulfan l dieldrin 4,4'-DOE endrin endosulfan II 4,4'-000 endrin eldehyde endosulfan sulfate 4,4'-001 methoxychlor endrin ketone chlordens toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232 ٠ Aroclor-1242 Aroclor-1248 Aroctor-175A

1	والمستحدد المار المستوري والماية المولة والإيام المستوادية	դ ։ վ⊹		, 	,	· · · · · · · · · · · · · · · · · · ·		,	·	4	•
į	CASE X 8358 site: Diamend Intl.	12	DIT.	19/	Ka	Ua/K	3	129/K.	9	1	
į	i.te: Diamend Intly	3	LIHIT		\$2	174	†	122113	1	1	1
•	COMPOUND	17		4257	EX 258	2337	£6260	12261	EQ262		
	CUTOLOWGGHIGH			 					 	<u></u>	L
	bromomethane	-4-		 		 	 	ļ	 	ļ	ļ
	vinyl chloride			 		 	 	 	 	ļ	
Ì	chlorocthene	.		احمت	 	<u> </u>	 		 	 	
Ì	methylene chloride	-4-		945 X		76	37 <i>c</i>	225	350	 	
İ	acatona	-4-		600	160	40	£1	31	130	 	
1	cerbon disulfide	-4			35	ļ	}	}	ļ	 	
ļ	1,1-dichloroethene			 	 	ļ	 	 	 	 	
	1,1-dichloroethene			ļ		 	ļ	 			
V	trans-1,2,-dichlaroethene	\dashv		ļ	 	 			 		
0	chloroform	-+		 	 	 	 	<u> </u>	 	 	
_	1,2-dichloroethene	-		 	 	 	 	 	 	 	
A	2-but anona	\dashv		 	9	 	 	 	 	 	
· •	1,1,1-trichloroethane			 			 	 	 		
	carbon tetrachloride	-+			 	 	 	 	 		
	vinyl acetata	\dashv			 	 	 	 	 	 	1
į	bromodichloromethana	-+		h	 		 	 	 	 	1
ļ	1, 1, 2, 2-tetrachloroethans	-+	~	 	 			 	 	 	
	1,2-dichloropropana trens-1,3-dichloropropena	-			 		 	 	 		
ì	trichloroethene				 		 			 	
	dibromochloromethane	一十		 	 		1	 	1	 	
	1,1,2-trichloroethane	十		 	 		1	 	†	 	
	benzene				 		1	 			
ł	cis-1,3-dichloropropens	1					1	 	 		1
	2-chloroethylvinylether	7					1	1		·	1
Ì	bromoform	_						·			1
Ì	2-hexanone										1
Ì	4-cethy1-2-pentanone	丁									1
	tetrachloroethene	丁									
	taluene	丁	•	17	130	16	35	23	12		
	chlorobenzene	$oldsymbol{\bot}$									
	sthylbenzens	\bot									
^	styrene	\bot									
	total xylenes	\bot		<u> </u>				L			
,	N-mitrosodimethylamine							L			
•	phenol	4		ļ							
Ì	eniline	4		ļl			 				ļ
Ì	bis(2-chloroethyl)ether	4		ļl	<u> </u>		 	ļ	 		ļ
	2-chlorophenol	4			ļļ	 	ļļ	 	 		
	1,3-dichlorobenzene	+		 	ļ	 	 	ļl	 		
	1,4-dichlorobenzene	-+		ļl	 	 	ļl		 		
	benzyl elcohol	+				~~	 		ļl		
1	1,2-dichlorobenzene 2-methylphenol	+		<u> </u>	ļ	ļ	<u> </u>	ļ	 		ļ
	bis(2-chloroisopropyl)ether	十		 			├ ~~~		 		}
	4-methylphenol	+				~~~	ţ	 	 		
	N-nitroso-di-n-propylamine	十							 		
ì		-+		·	 		 		 		
	i hexachloroethana						·	·	·	~	
1	hexachloroethena nitrobenzena	十				, ,	1 1	į •			3
ç	nitrobenzene	丰									
5	nitrobenzens Isophrons	#									
5	nitrobenzene	#									
5	nitrobenzene isophrone 2-nitrophenol										:
5	nitrobenzene isophrone 2-nitrophenol 2,4-dimethylphenol										
5 /	nitrobenzene isophrone 2-nitrophenol 2,4-dimethylphenol benzole seid										
5	nitrobenzens isophrons 2-nitrophenol 2,4-dimethylphenol benzole scid bis(2-chloroethoxy)methans										
5 /	nitrobenzens isophrone 2-nitrophenol 2,4-dimethylphenol benzole scid bis(2-chloroethoxy)methans 2,4-dichlorophenol										
15 /	nitrobenzens isophrons 2-nitrophenol 2,4-dimethylphenol benzoic scid bis(2-chloroethoxy)methans 2,4-dichlorophenol 1,2,4-trichlorobenzens										
/	nitrobenzens isophrons 2-nitrophenol 2,4-dimethylphenol benzoic scid bis(2-chloroethoxy)methans 2,4-dichlorophenol 1,2,4-trichlorobenzens napthalens										
/	nitrobenzens isophrons 2-nitrophenol 2,4-dimethylphenol benzoic acid bis(2-chloroethoxy)methans 2,4-dichlorophenol 1,2,4-trichlorobenzens napthalens 4-chlorosnilins hexachlorobutsdiens 4-chloro-3-methylphenol										
/	nitrobenzens isophrons 2-nitrophenol 2,4-dimethylphenol benzoic acid bis(2-chloroethoxy)methans 2,4-dichlorophenol 1,2,4-trichlorobenzens napthalens 4-chlorosnilins hexachlorobutsdiens 4-chloro-3-methylphenol 2-methylnapthalens										
/	nitrobenzens isophrons 2-nitrophenol 2,4-dimethylphenol benzoic acid bis(2-chloroethoxy)methans 2,4-dichlorophenol 1,2,4-trichlorobenzens napthalens 4-chlorosnilins hexachlorobutsdiens 4-chloro-3-methylphenol 2-methylnapthalens					-					
/	nitrobenzens isophrons 2-nitrophenol 2,4-dimethylphenol benzoic acid bis(2-chloroethoxy)methans 2,4-dichlorophenol 1,2,4-trichlorobenzens napthalens 4-chlorosnilins hexachlorobutsdiens 4-chloro-3-methylphenol										

1, 5

·.. }

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V CALIBRATION OUTLIERS VOLATILE HSL COMPOUNDS

CASE/SAS # 8359

CONTRACTOR Mataley

i C //	71. /9 7 \$R S D	*	RF	2/3.7 30		RF	157	*		10	7	RF ·	10
KF	TARSO		KF			RF		*	RF	10			10
				21.11	7							•	
				21.17									
				21.17	7								
				el 17	Ŧ								
				cl. 17	Ŧ					 			
				₹!. j7	Ţ	ļ			!	[1		
		-	-	zl. 17	T					ł			<u> </u>
				Į į		ļ	بهزو ؤ.	1	 	1145	J		<u> </u>
		-	1	 	L		l	<u> </u>				ļ	<u> </u>
		1	4						<u> </u>				<u> </u>
-	 		ļ					L		ļ	<u> </u>		<u> </u>
										<u> </u>	ļ		<u> </u>
 	 	<u> </u>	ļ							 			<u> </u>
Į.													<u> </u>
			<u> </u>										
1													
		<u></u>	<u> </u>				•						
	1												
1]									<u> </u>			
1	1												
	<u> </u>	L											<u> </u>
	<u> </u>												L
	<u></u>												l
1	1												
1		1											
1								J					j
11													
											\Box		
P						15	25	9					
			7 2 2	255]								
			ز ان تنه	26-1									
]]								
			FO	26.2]								
]]								
!]								
]													
]			L										
		Pic -	Fic -	20 2 20 2 20 2	Pec = = = = = = = = = = = = = = = = = = =	χο 255 Εωρό! Εωρό	£0255 £0261 £0260	Per 25° + 25° **E 25°	Per = 257 + 259 #6255 #6255 #6256 #6250	Per 2025! + 259 **G 255 **EQ261 **EQ260	PC- = 025" + 6259 E 0 255 E 0 255 E 0 250	PC- = 025" + Q 259 \(\tilde{G} \) 250 \(\tilde{G} \) 250	PL- =025' +Q259

 $[\]star$ These flags should be applied to the analytes on the sample data sheets.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V CALIBRATION OUTLIERS SEMIVOLATILE HSL COMPOUNDS

(Page 1) CONTRACTOR IN the trace

CASE/SAS # 5359

Cont. Cal. Cont. Cal. Cont. Cal. Cont. Instrument # m<1) Init. Cal. 12/-/57 DATE/TIME: 11/2/157 111/9/97 RF 1%D 1* RF 120 1* RF %RSD * RF 1%D RF 12D Phenol bis(-2-Chloroethyl)Ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-chloroisopropyl)Ether 4-Methylphenol N-Nitroso-Di-n-Propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)Methane 2.4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 1 4-Chloro-3-Methylphenol : 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl Phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2.4-Dinitrophenol 4-Nitrophenol Dibenzofuran £10258 ALC. EG 257 EG 259 **AFFECTED** ES 260 SAMPLES: 26 261 52 262 Reviewer Initials/Date: 1 1/2/59

^{*} These flags should be applied to the analytes on the sample data sheets.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V CALIBRATION OUTLIERS SEMIVOLATILE HSL COMPOUNDS

CASE/SAS # 5255 Page 2 CONTRACTOR DIE +9 Trace

Instrument # 1255 12		t. Cal.		t.C					Con	t. C	al.	Con	t.
DATE/TIME:	11.	119157		21/5		17			L				
	RF	IRSD *	RF	%D	*	RF	20	*	RF	20	*	RF	%D
2,4-Dinitrotoluene				<u> </u>			1			<u> </u>			
2,6-Dinitrotoluene						·							
Diethylphthalate							<u> </u>						
4-Chlorophenyl-phenylether													
Fluorene													
4-Nitroaniline													
4,6-Dinitro-2-Methylphenol	T	1	1										Ī
N-Nitrosodiphenylamine													1
4-Bromophenyl-phenylether						1							1
Hexachlorobenzene	1			1									Ī
Pentachlorophenol	1		1	1		1							Ī
Phenanthrene													
Anthracene			1		1								<u> </u>
Di-n-Butylphthalate						1	1						<u> </u>
Fluoranthene			1.	1		Ī							<u> </u>
Pyrene			1										
Butylbenzylphthalate			1										Ī
Benzo(a)Anthracene			1										Γ
bis(2-Ethylhexyl)Phthalate							35 33	7					Ī
Chrysene	1												_
Di-n-Octyl Phthalate		1				1							
Benzo(b)Fluoranthene		1	}			1							1
Benzo(k)Fluoranthene		i	1		i	:							1
Benzo(a)Pyrene	1		1	1	-								i
Indeno(1,2,3-cd)Pyrene	7	1	γ	1		i							i
Dibenz(a,h)Anthracene	T		1		—							·	<u> </u>
Benzo(q,h,i) Perylene	7		1		_	1							

SEE PAGE 1 FOR AFFECTED SAMPLES.

*	These	flags	should	be	applied	to	the	ana'	lytes	on	the	sample	data	sheets	•
		;	Reviewe	r's	Initials	s/Da	ite:	1	e	j,	/12	185			

8/3

PAGE	0F	

Case:	8358	
Contractor:	Metatrace	

TENTATIVELY IDENTIFIED COMPOUNDS WATCH ASSESSMENT

NOTE: Reviewer should note directly on Organic Analysis Data Sheet (OADS) those matches that in his opinion (based on contract criteria) are unreasonable.

CRITERIA

- (1) Relative intensities of major ions (>10%) reference spectrum should be present in the sample spectrum.
- (2) Relative intensities of major ions in sample spectrum should agree to within + 20% of reference spectrum intensities.
- (3) Molecular ions present in reference spectrum should be present in sample spectrum.
- Ions present in sample spectrum, but not in reference spectrum should be reviewed for possible background contamination or presence of coeluting interferences.
- (5) Ions present in reference spectrum, but not in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting interferences.
- (6) If, in the reviewer's opinion, no valid identification can be made the compound should be labelled as "unknown" and the initials and date of the reviewer placed on the OADS.

Reviewer's Initials/Date: ZC by BNJ 1/22/88

metaTRACE, Inc.

13715 Ricter Trail North

Earth City, MO 63045

(314) 293-3566

A subsidiary of TRC Companies, Inc.

REGEIVED

DEC 11 1987

CASE NARRATIVE

U.S. EPA, CENTRAL REGIONAL LAB. 536 S. CLARK STREET CHICAGO, ILLINOIS 60505

Laboratory Name: metaTRACE, Inc.

13715 Rider Trail North Earth City, MO 63045

Contract Number: 68-01-7417 SDG: EQ257

Case Number: 8358 Lab Code: meta

EPA Sample Numbers: metaTRACE Sample #:

AA05026 EQ257 EQ258 AA05027 EQ259 AA05028 AA05029 EQ260 EQ261 AA05030 AA05031 EQ262 EQ262MS AA05032 EQ262MSD AA05033

General:

Six soil samples for case 8358 were received on 10-27-87 by the metaTRACE Sample Custodian. All samples were received in good condition. Samples were logged into the metaTRACE LIMS sample tracking system and assigned the unique identifiers listed above.

Volatile Analysis:

The volatile samples were analyzed on 11-04-87, 11-05-87 and 11-06-87. Surrogate spike recoveries were in control for all samples, blanks, matrix spikes and duplicates.

Extraction: .

All soil samples were extracted for BNAs and Pesticide/PCBs on 11-02-87.

Semivolatile Analysis:

Semivolatile extracts were analyzed on 11-21-87 and 12-04-87. Several samples required a 1:10 dilution since they could not be concentrated to a final volume of 0.95ml. Surrogates were diluted out in two samples.

Page 2

Pesticide Analysis:

Pesticide samples were analyzed on 11-17-87. The 6 ft X 2mm I.D. mixed phase column used, did not separate DBC from Endrin ketone. The lab is awaiting a new "guaranteed" packed 6 ft. X 4mm I.D. column to correct this problem. The %RSD and % Difference criteria for Evaluation mixtures, Individual standards and DBC were met.

Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Kenneth J. Baughman Assistant Vice President,

Manager, Project Administration

600003

In Reference to Case No(s):
<u>,7</u> %

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log

Date of Call:	1-27-66		
Laboratory Name:	- 1.12 c		F
Lab Contact:		· . —	= Receive
Region:			UU JAN 2 8 1988
Regional Contact:	policies to	· v	
Call Initiated By:	Laboratory	× Region	U.S. EPA CENTRAL REGIONAL LAB
In reference to data for th	ne following sample i	number(s):	÷
Summary of Questions/Issu	ues Discussed:		
		_	
Summary of Resolution:			
			· · · · · · · · · · · · · · · · · · ·
			·
	·	• •	
Signati	ure		Date

Distribution: (1) Lab Copy, (2) Region Copy, (3) SMO Copy

TABLES. ONLY DETECTABLE CONCENTRATIONS ARE REPORTED. HOWEVER, IF THE COMPOUND HAS A FOOTNOTE FOLLOWING THE VALUE, CONSULT THE DEFINITION OF THE FOOTNOTE PROVIDED BELOW. ADDITIONAL QA/QC IS PROVIDED IN THE ATTACHED DATA SHEETS.

I. REPORTING UNITS

A. Organics

- Water Samples ug/L or ppb (parts per billion)
- 2. Soils or Sediments ug/kg or ppb (parts per billion)

B. Metals

- 1. Water Samples ug/L or ppb (parts per billion)
- 2. Soils or Sediments mg/kg or ppm (parts per million)

II. DEFINITION OF FOOTNOTES TO ANALYTICAL DATA

A. Organics

U J UJ C B	DEFINITION	INTERPRETATION		
U	Indicates compound was analyzed for but not detected.	Compound was not detected.		
j	Indicates an estimated value.	Compound value may be semi-quantitative		
UJ	Quantitation limit is estimated due to a Quality Control (QC) protocol.	Compound was not detected.		
c	This flag applies to pesticide results where the identifica- tion has been confirmed by GC/MS. Single component pesticides >10 ng/ul in the final extract shall be confirmed by GC/MS.	Compound was confirmed by mass spectrosc		
В	This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.	Compound value may be semi-quantitative it is <5x the blank concentration '<10x the blank concentrations for common lab artifacts: phthalates, methylene chlori acetone, toluene, 2-butanone).		
E	This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis. This flag will not apply to pesticides/PCBs analyzed by GC/EC methods.	Compound value may be semi-quantitative.		
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.	Alerts data user to a possible change in the CRQL.		
A	This flag indicates that a TIC is a suspected aldol- condensation product.	Alerts data user of a lab artifact.		
R	Results are unusable due to a major violation of QC protocol.	Compound value is not usable.		

B. Motals

FOOTI	HOTE	DEFINITION	INTERPRETATION
OLD	HEW		-
E	£	Estimated or not reported due to inteference. See laboratory narrative.	Compound or element was not detected or value may be semi-quantitative.
		Analysis by Method of Standard Additions.	Value may be quantitative.
R	×	Spike recoveries outside QC protocols which indicates a possible matrix problem. Data may be biased high or low. See spike results and laboratory narrative.	Value may be quantitative or semi- quantitative.
•	•	Duplicate value outside QC protocols which indicates a possible matrix problem.	Value may be semi-quantitative.
. •	+	Correlation coefficient for standard additions in less than 0.995. See review and laboratory narrative.	Data value may be biased.
1)	B	Value is real, but is above instrument DL and below CRDL.	Value may be quantitative or semi- quantitative.
บว		DL is estimated because of a QC protocol. DL is possibly above or below CRDL.	Compound or element was not detected.
3		Value is above CRDL and is an estimated value because of a QC Protocol.	Value may be semi-quantitative.
U	U	Compound was analyzed for but not detected.	Compound was not detected.
	H	Duplicate injection precision not met.	Value may be semi-quantitative.
	W	Post digestion spike for furnance AA analysis is out of control limits (35-115%), while sample absorbance is <50% of spike absorbance.	Value may be semi-quantitative.

C. Other Symbols Used

1.1

- MA Value not available due to insufficient data.
- MR Value not calculated since chemical is not a carcinogen.
- () Estimated value.

Target Compound List (TCL) and Contract Required Quantitation Limits (CRQL)*

	Quan	titation Limits**		
•	Water	Low Soil/Sediment(a)	Med Soil	Primary
¬Volatiles	uq/L	uq/Kq	ug/Kg	Ions
Chloromethane	10	10	1000	5 0
Bromomethane	10	10	1000	94
Vinyl Chloride	10	10	1000	62
Chloroethane	10	10	1000	64
Methylene Chloride	5	5	500	84
lAcetone	10	10	1000	43
Carbon Disulfide	5	5	500	76
1,1-Dichloroethene	5	5	500	96
71,1-Dichloroethane	5	5 5	500	63
1,2-Dichloroethene (total)		5	500	96
Chloroform	5 5	. 5	500	83
1,2-Dichloroethane	5	5	500	62
2-Butanone	10	10	1000	72
1,1,1-Trichloroethane	5	5	500	97
Carbon Tetrachloride	5	5	500	
	10	10		117
Vinyl Acetate			1000	43
Bromodichloromethane	5 5 5 5 5 5 5 5	5 5 5 5 5 5 5	500	83
1,2-Dichloropropane	2	5 F	500	63
cis-1,3-Dichloropropene	2	5	500	75
Trichloroethene	5	5	500	130
Dibromochloromethane	2	5	500	129
1,1,2-Trichloroethane	5	5	500	97
Benzene	5	5	500	78
trans-1,3-Dichloropropene	5	5	500	75
Bromoform	5	.5	500	173
4-Methyl-2-pentanone	10	10	1000	43
2-Hexanone	10	10	1000	43
Tetrachloroethene	5	5	500	164
Toluene	. 5 . 5	5	500	92
1.1.2.2-Tetrachloroethane	, 5	· 5	500	83
-Chlorobenzene	5 5	5	500	112
Ethyl Benzene		5	500	106
Styrene	5 5	5 5	500	104
_Xylenes (total)	5	5	500	106
SURROGATE STANDARDS 4-Bromofluorobenzene 1,2-Dichloroethane d-4		•		
14-Bromorluorobenzene				95
1/2-Dichioroethane d-4				65
Toluene d-8				98
-INTERNAL STANDARDS		000003		
Bromochloromethane		0000,,,,		128
1.4-Difluorobenzene	•			114
_Chlorobenzene d-5				117

Target Compound List (TCL) and Contract Required Quantitation Limits (CRQL)*

	Ouse	rtitation Timitatt			
	Water	ntitation Limits** Low Soil/Sediment(b)	Mod coil	Prima	~1.
Semivolatiles	water ug/L		ug/Kg	Ions	
Semiyolaciles	<u> </u>	ug/Kg	ug/ kg	TOUS	
Phenol	10	330	19800	94	
bis (2-Chloroethyl) ether	10	330	19800	93	
2-Chlorophenol	10	330	19800	128	
71.3-Dichlorobenzene	10	330	19800	146	
1,4-Dichlorobenzene	10	330	19800	146	
Benzyl alcohol	10	330	19800	108	
1,2-Dichlorobenzene	10	330	19800	146	
	10	330	19800	108	
2-Methylphenol	10	330	19000	100	
bis(2-Chloroisoproply) ether	10	330	10000	AE	
	10	330	19800 19800	45	
4-Methylphenol	10	330	19800	108	
N-Nitroso-di-n-	10	220	10000	70	
dipropylamine	10	330	19800	70	
Hexachloroethane	10	330	19800	117	
Nitrobenzene	10	330	19800	77	
Isophorone		330	19800	82	
2-Nitrophenol	10	330	19800	139	
2.4-Dimethylphenol	10	330	19800	107	
'Benzoic acid	50	1600	96000	122	
bis (2-Chloroethoxy) methane	10	330	19800	93	
2.4-Dichlorophenol	10	330	19800	162	
]1,2,4-Trichlorobenzene	10	330	19800	180	
Naphthalene	10	330	19800	128	
-74-Chloroaniline	10	330	19800	127	
Hexachlorobutadiene	10	330	19800	225	
4-Chloro-3-methylphenol	10	220	10000	107	
(para-chloro-meta-cresol)	10	330	19800 19800	107	
2-Methylnaphthalene	10	330 330		142	
JHexachlorocyclopentadiene 2,4,6-Trichlorophenol	10		19800	237	
72.4.5-Trichlorophenol	50	330	19800	196	
2-Chloronaphthalene	10	1600 330	96000	196	
2-Nitroaniline	50		19800	162	
Dimethylphthalate	10	1600 330	96000	65	
Acenaphthylene	10		19800	163	
2.6-Dinitrotoluene	10	330	19800	152	
3-Nitroaniline	50	330	19800	165	
Acenaphthene	10	1600	96000	138	
12.4-Dinitrophenol	50	330	19800	153	7
4-Nitrophenol	50	1600	96000	184	00
"¡Dibenzofuran	10	1600	96000	109	\simeq
2,4-Dinitrotoluene	10	330 330	19800	168	0000
		330	19800	165	\sim
Diethylphthalate	10	330	19800	149	
4-Chlorophenyl-phenyl ether	10	330	10000	204	
Fluorene	10	330	19800	204	
4-Nitroaniline	۲0 ت	330	19800	166	
= · · · · · · · · · · · · · · · · · · ·		•			

Target Compound List (TCL) and Contract Required Quantitation Limits (CRQL)*

	Quant	itation Limits**		
	Water	Low Soil/Sediment(b)	Med Soil	Primary
Semivolatiles	ug/L	ug/Kg	ug/Kg	Ions
			•	
74.6-Dinitro-2-methylphenol	5 0	1600	96000	198
N-nitrosodiphenylamine	10	330	19800	169
4-Bromophenyl-phenylether	10	330	19800	248
Hexachlorobenzene	10	330	19800	284
Pentachlorophenol	5 0	1600	9600 0	266
Phenanthrene	10	330	19800	178
Anthracene	10	330	19800	178
Di-n-butylphthalate	10	330	19800	149
Fluoranthene	10	330	19800	202
Pyrene	10	330	19800	202
Butylbenzylphthalate	10	330	19800	149
3,3'-Dichlorobenzidine	20	660	39600	252
Benzo(a)anthracene	10	330	19800	228
Chrysene	10	330	19800	228
bis(2-Ethylhexyl)phthalate	10	330	19800	149
''Di-n-octylphthalate	10	330	19800	149
Benzo(b)fluoranthene	10	330	19800	252
Benzo(k)fluoranthene	10	330	19800	252
· Benzo(a) pyrene	10	. 330	19800	252
Indeno(1,2,3-cd)pyrene	10	330	19800	276
Dibenz(a,h)anthracene	10	330	19800	278
Benzo(g,h,i)perylene	10	330	19800	276
SURROGATE STANDARDS				
Phenol d-5				99
-2-Fluoropheno				112
2.4.6-Tribromophenol				330
d-5 Nitrobenzene			•	82
. 2-Fluorobiphenyl				172
Terphenyl				244
INTERNAL STANDARDS				
1.4-Dichlorobenzene-d4		•		152
Naphthalene-d8				136
Acenapthene-dl0				164
Phenanthrene-dl0				188
Chrysene-dl2				240
Perylene-d12				264
_ .i				

2B SOIL VOLATILE SURROGATE RECOVERY

Lab Name: MetaTRACE, TAC Contract: 18-01-7417

I. Code: META Case No.: 8358 SAS No.: SDG No.: EW257

Level: (low/med) Low

- 1	EPA	Sl	S2	S3	OTHER	TOT
' 1	SAMPLE NO.	(TOL)#	(BFB) #	(DCE) #	•	OUT
1		=====	======	======	=====	===
01		104	99	104	l	10_1
02	VBCK7	105	101	101	I	101
03	VBLK3	97	94	100	l	01
04	. FQ257	1/0	104	103		0
05	EQ258	116	<u> </u>	105	l	01
06	EQ258DL	1/2	95	99	l	0
07	E0259	108	101	108	l	101
08	E0260	110	100		l	101
09	EQ260 DL		98	103	l	121
10	EQDUI	112	_//2	107	li	احا
11	BQ 263		_//3	108		01
12	EDGGS DI	100	94	101		0
13	EQ 262 MS	99_	94	96		101
14	EQ262 m50		102	104		0
15						!!
16						<u> </u>
17						
18	· · · · · · · · · · · · · · · · · · ·	ļ				!!
19			!			
20						
21						
22			!			!!
23		\	·			!!
24						!!
25						!
26						!!
28						!!
29			[!!
30						!
301			·			1

QC LIMITS

S1 (TOL) = Toluene-d8 (81-117)

S2 (BFB) = Bromofluorobenzene (74-121)

S3 (DCE) = 1,2-Dichloroethane-d4 (70-121)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

700000

1 _e _/ of _/

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Mota TRACE, TNC contract: 68:01-7417

Lab Code: META Case No.: 8358 SAS No.: SDG No.: EQ357

Level: (low/med) LOW

i	SAMPLE NO.		S2	S3	S4	S5	S6	OTHER	TOT	i
	0.5	(NBZ)#	(FBP) #	(TPH) #	(PHL) #	(2FP)#	(TBP) #		OUT	i
. 1	*******		=====	=====	=====	=====	=====	=====	===	1
HES DI	SBLK	90	93-	127	77	77	91		13	IHB
02	EQ258	DL	DL	DL	DL	DL	DL			l
03	EQ259	DL	<u> DL</u>	ا_عد_ا	<u>_DL</u> _	DL	DL	l	اا	1
041	EQQUI	42	67	92	38		67		0	1
05	FOD'D	56	83	/33	_41	35	42	l	0	l
06	EQQUAMS	78	90	120	_55_	61	130			1
07	EQ262 MSN	53	72.	_110	48	45	119		0	1
180	ERZLD	DL	DL	DL	DL_	DL	DL			l
091	EQ257	DL	DL	DL	DL	DL	DL			l
Here! 104	SBUK	14*	1-77	60	135 *	-69	32	l	12	1 1
111	S. BLK (101)	1 95	92	110	83	68	1.6		10	1
12		1	1	l	l	l		1	1	1
13		1	1	1	l	·				ſ
14		1	1		l	1		1	1	I
15		1	1	1	l	l	1	1	1	l
161		1	1	1	1	l	l	1	1	ĺ
17		1	l	1	l					I
18		1		1	l	1			1	1
19		1	1	1	1	l		i	1	I
20		1	1	{	!	1			1	ł
21		1	1	1	1	1				Ì
22		1	1	I	l	1	1		<u> </u>	Í
23		1	1	1	1	1		1	i —	Ì
24		i		1	1	1	1	i		Ì
25	•	1		1	1]	<u> </u>	i	i	i
26		1	1	1	i		1	1	1	١
27			1	1	1	1	1	1	1	1
28		1	1	1	1	l	1	1	1	1
29		1	1	1	1	1		1	1	I
30		1	I	l		1				J

				QC LIMITS
Sl	(NBZ)	=	Nitrobenzene-d5	(23~120)
S2	(FBP)	=	2-Fluorobiphenyl	(30-115)
S3	(TPH)	=	Terphenyl-d14	(18-137)
S4	(PHL)	=	Phenol-d5	(24-113)
S 5	(2FP)	=	2-Fluorophenol	(25-121)
S6	(TBP)	=	2,4,6-Tribromophenol	(19-122)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

F = Of

3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:_	meta Tk	PACE THE		Contr	act:_	48-01-7417		
4 - ג	Code:	META	Case No.:	8358	SAS	№.:		SDG No.:	EQ257
Mat:	rix Spi	ike - EPA	Sample No.:	EDZ	(e2	_ L	evel:(low	/med) <u>(</u>	<u>nu</u>

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50 50		62 38 49 49 49	124 76 98 988~**	====== 59-172 62-137 66-142 59-139 60-133

	SPIKE	MSD	MSD		<u> </u>	ı
•	ADDED	CONCENTRATION	*	*	QC LI	MITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
====================================	=======		=====	=====	=====	======
1,1-Dichloroethene	50	1491	98	23 *	22	59-172
Trichloroethene	50	131	62	20	24	62-137
Benzene	50	42	94	15	21	66-142
Toluene	50	48	96	2	21	59-139
Chlorobenzene	50	40	80	16	21	60-133
	l	l			lİ	li

Column to be used to flag recovery and RPD values with an asterisk
Values outside of QC limits
PD: out of outside limits pike Recovery: out of outside limits
COMMENTS:
000008

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:	metaTR	ACE, INC		Contract	68-01-741	<u>t</u> _	
I-5	Code: _	META	Case No.:	8358	SAS No.		SDG No.:	EQ253
Mat	rix Spik	e - EPA	Sample No.:	EQ	600	Level: (lo	w/med) Lo	<u>.u.</u>

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	- 5	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
======================================	=======	*****	=======================================	=====	=====
Phenol	200	l	119	56	26- 90
2-Chlorophenol	200	<u> </u>		56	25-102
1,4-Dichlorobenzene	100	0	167	47	28-104
N-Nitroso-di-n-prop.(1)	100	0	173	73	41-126
1,2,4-Trichlorobenzene	100	10	100	100	38-107
4-Chloro-3-methylphenol	200	0	1	86	26-103
Acenaphthene	100	io	1 56	56	31-137
4-Nitrophenol	200	I	344		111-114
2,4-Dinitrotoluene	100	1	109	109*	28- £9
Pentachlorophenol	200	l	321	161*	17-109
Pyrene	100	1	120	130	35-142
	·		1		1 i

	SPIKE	MSD	MSD		ſ	
	ADDED	CONCENTRATION	*	j	QC L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
Phenol	200	93	49	==== == /3	===== 35	====== 26- 50
2-Chlorophenol	200	83	43	26	l 50	25-102
1,4-Dichlorobenzene	100	51	51	2.7	27	28-104
N-Nitroso-di-n-prop.(1)	100	57	57	25	38	41-125
1,2,4-Trichlorobenzene	100	70	70	35*	23	38-167
4-Chloro-3-methylphenol	200	/53	77	11	33	126-103
Acenaphthene	100	48	48	15	19	j31-137
4-Nitrophenol	200	300	150*	14	50	j 11-114
2,4-Dinitrotoluene	100	94	94 #	15	47	İ28- ε9
Pentachlorophenol	200	293	146#	10	47	17-109
Pyrene	100	110	110	9	36	35-142
					Ì	Ì

(1) N-Nitroso-di-n-propylamine

*	Column to be used to flag recovery and RPD values with an asterisk Values outside of QC limits
R S	PD: out of _// outside limits oike Recovery: out of outside limits
C	MMFNTS.

4 A

	VOLATILE	METHOD BLANK SU	MMARY.			
Lab Name: metaTRACE, Inc. Contract: 68-01-7417						
I-b Code: NETA Case No.: 8358 SAS No.: SDG No.: EQ357						
Lab File ID:	>C15	ab	Lab Sampl	e ID: VBLK		
Date Analyze	d:	105/87	Time Anal	yzed: <u>14:06</u>		
Matrix: (soi	1/water) <u>50</u>	IL_	Level:(lo	w/med) /w		
Instrument I	D:	115C				
THIS P	ETHOD BLANK A	APPLIES TO THE I	FOLLOWING SAMPI	ES, MS AND MSD:		
1	EPA	LAB	LAB	TIME		
·	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED		
1	======================================		EDDEDEDEDEDEDE	=======================================		
01	EPRSEDL	AAOSDZ7 DL	1_ <i>>C1535</i>	1_20:30_1		
02	EQ259	P.PO5028	·C/536	00:07		
03	EROBODL 1	AADSUZ9OL	1 <u>>C1537</u>	1 10:48		
04	· ·			.!!		
05	•			.!!		
06	l		l	.		

0 / 1	 		l 1
08			
09			
10			
11			
12			
13			
14			
15			
16			
17			
18			11
19			[
20	 1		
	•		

29 j 30 j

COMMENTS:	
,	
· ·	·

≥ 1 of 1 F

4λ

	VOLATILE	4 A METHOD BLANK S	UMMARY.		
Lab Name:	metaTRACE, Inc.	co	ntract: 68-01-	7417	· · · ·
I-b Code:	META Case	no.: <u>8358</u> s	AS No.:	SDG No.:	E0257
Lab File ID:	<u>>C/5</u>	42	Lab Samp	le ID:	THUD BIANK
Date Analyzed: ///06/8?			Time Analyzed: 10:39		
Matrix: (soil/water) SOIL			Level: (1	ow/med)	LOW .
Instrument I	.D:	nsc			
THIS H	METHOD BLANK A	APPLIES TO THE	FOLLOWING SAMP	LES, MS AND	MSD:
٤	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED	-
٦	SAMPLE NO.	====================================	rime in	= =====================================	= =
cı	EQ262 DL	A405031DL	>C1545	_i_ <i></i> i	_i
02	EQQUQ MS	AA05032	1-2C1546	13:30	_!
¬ 03{			-\	_{-	_ [
J 051			·	-¦	- }
_ C6	·	· •	·		-i

03			<u></u> _	
04				11
05		1		
C6				
07				
C8				
09				
10				
11				
12				i
13				
14				
15				i
16	•			j
17				
18				
19				ii
20		·		
21				
22				
23		1		
24		[11
25		1		l
26	l	1		
27	1	1		
28		1		
20	1	1	1	,:

COMMENTS:	
L.	000011

F = 1 of 1

29 j 30 j

VOLATILE METHOD BLANK SUMMARY.

Lab Name: metaTRACE,	Inc.	Contract: 68-01-74	17	•
I-b Code: META	Case No.: <u>8358</u>	SAS No.:	SDG	No.: <u>E0257</u>
Lab File ID:	>C1499	Lab Sample	ID:	METHOD BLANK
Date Analyzed:	11/04/87	Time Analy	zed:	8:21
Matrix: (soil/water)	501L	Level: (low	/med	<u> 2010</u>
Instrument ID:	_msc			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

- 1	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1			======================================	=======================================
01	EQQ57	AAO 5026	>C1564	<u>//:3a</u>
02	L-Q258	1405027	>C1505	12:09
03	EQ261	AA05030	> 01508	14:01
04	EODIO	AA05029	>01507	13:23
05	E0262	HA05031	701509	14:39
06	EQ 262 MSD	AA0 5032	>:1511	15:53
07			i ·	
08	~		<u> </u>	
09		' 	' 	
10		'	` <u> </u>	'
11		<u></u>		·
12			'	· ·
13	· —————————	\ <u></u>	·	·
14	•		'	¦
15	·	'	`	`
16	•	'	!	<u></u> ا
17	, ————————————————————————————————————	('
18	·	<u> </u>	1	
19	•	'	<u> </u>	
20	·		\	¦
21	·		·	¦
22	· ————	·	' <u></u>	} <u>}</u>
23	· ————————————————————————————————————	<u>'</u>	¦	! }
24	·		<u>'</u>	¦
25	· ————	·	¦	¦
26	·	i	}	
27	·	¦ 	·	·
28	` 	<u> </u>	!	¦
29	• ———————	<u></u>	·	} <u>-</u>
30	· 	}	ļ 	!!
20	l	·	l <u></u>	1{

COMMENTS:	

SOIL PESTICIDE SURROGATE RECOVERY

Lab Name: META TRACE	Contract: <u>68-01-1417</u>
J-5 code: META Case No.: 83	58 SAS NO.: SDG NO.: EQ 257
Level: (low/med) Low	

	-			
1	EPA	S1	OTHER	
ĺ	SAMPLE NO.	(DBC) #		l
1				1 . 144
01		72	l	ملا والماء الملا
02	E9257	0 +	l	1 1 ²²
03	EQ257 N	<u>80</u>	l	ومززا
04	E0 258	0 *	l	\$
05	F9259	0 *	!	1
06	FUZUO	0 *	!	1
07	1 Eig 261	1_72_	1	\$
	1513202	<u></u>	1	1
09	•	1_63	 	ł
10	•	149	ļ	1
11	•	D	!	فهزا
	151328 DL	<u>8</u> <u>P</u>	<u> </u>	وبلاا
13	184 259 DL	120	<u> </u>	120 -
	E9257 DL	100	<u> </u>	1 /
15	·		l	Ĭ
16	·	<u> </u>	ا [.]	1
17	•	 	ł	1
18	*	<u> </u>	!	1
19	•	ļ		1
20	•		1	1
21	· ————	l	1	1
22		<u> </u>		ł
23		ļ	<u> </u>	į
24		<u> </u>	!	Į
25		!]	1
26	·	ļ	<u> </u>	
27	•	<u> </u>	ļ	l
28	•	!	<u> </u>	ļ
29	·	!	[!
30	l		·	I

ADVISORY QC LIMITS

S1 (DBC) = Dibutylchlorendate

(20-150)

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D Surrogates diluted out

e l of l

SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: META-TRACE Contract: 68-01-7417 : . code: META case No.: 8358 SAS No.: SDG No.: EQ-257 Matrix Spike - EPA Sample No.: EQ 262 Level: (low/med) Low

	SPIKE	SAMPLE	MS	MS	QC I
	ADDED	CONCENTRATION	CONCENTRATION	\	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
EEEEEEEEEEEEEEE	EEEEEEEEE	=======================================	***********	FEEFE	=====
Lindane	3	10-	1	10 1	46-127
Heptachlor	6	0-	1	8.3	35-130
Aldrin	6	_ 0 ~	234	567 *	34-132
Dieldrin	6	-0-	.16	267*	31-134
Endrin		10-		1	42-135
4,4' DDT	1_13	10-	1	1_108	23-134
			l	l	I

	SPIKE	MSD	MSD	1	1	
•	ADDED	[CONCENTRATION]	*	 	QC L	imits
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
************	===== ======	======================================	=====	=====	=====	=====
Lindane	1 3	1 0 1	O *	1-0-	50	146-12
Heptachlor	1 6	1 5	83	0	31	35-13
Aldrin	. 6	2.5	417 4	30	43	134-13
Dieldrin	6	1 18	310 4	1:12	38	31-13
Endrin		1		- *	45	142-13
4,4' DDT	1 13	1 19	140 *	30	50	23-13
					1	1

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 3 out of 5 outside limits

spike Recovery: 49 out of 512 outside limits 143 12/3/17

COMMENTS: Spiking solution did not contain Enclain - Lindons, was not recorded

Lab Name: META TRACE	Contract: 68-01-7417	
' > Code: META Case No.: 8358	SAS No.: SDG N	o.: <u>EQ25</u> 7
Lab Sample ID: Blank 101	Lab File ID:	
Matrix: (soil/water) Soil	Level: (low/med) lou	<u>ນ</u>
Date Extracted: 11-2-87	Extraction: (SepF/Con	t/sonc)Sonc
Date Analyzed (1): 11-19-87	Date Analyzed (2):	11-20-87
Time Analyzed (1): 00:38	Time Analyzed (2):	22:22
Instrument ID (1): 6C5890-3	Instrument ID (2):	GC-5890-3
1.953P2401 GC Column ID (1): #0217.52P 2250	GC Column ID (2):	3%2100

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA LAB DATE DATE SAMPLE NO. SAMPLE ID ANALYZED 1 ANALYZED 2	
01 FQ257	
01	
02	
02	
03 EQ 258	7
04 EQ 259 AA 05028 11-18-87 11-21-81 06 EQ 261 AA 05030 11-18-87 11-21-81 06 EQ 261 AA 05030 11-18-87 11-21-87 07 E Q 262 AA 0 5032 11-18-87 11-21-87 11-21-87 08 EQ 262 ASD AA 05032 MS 11-18-97 11-21-87 10 FQ 267 DL AA 05026 DL 11-18-87 11-21-87 11	
06 EQ 261 AA 05030 11-18-87 11-21-87 07 EQ 262 AA 0 5031 11-18-87 11-21-87 08 EQ 262 AS AA 05032 MS 11-18-97 11-21-87 09 EQ 262 MS AA 05033 MS D 11-18-87 11-21-87 10 EQ 287 DL AA 05026 DL 11-18-87 11-21-87 11 EQ 258 Q AA 05027 DL 11-18-87 11-21-87 12 EQ 359 DL AA 05026 DL 11-18-87 11-21-81 13 EQ \$57 DL AA 05026 DL 11-18-97 11-21-81 14	
07 E Q 262 AA 0 5031 11-18-87 11-21-87 08 EQ 262 ms AA 0 5032 ms 11-18-97 11-21-87 09 EQ 262 msp AA 0 5033 msp 11-18-97 11-21-87 10 EQ 257 DL AA 0 5026 DL 11-18-97 11-21-87 11 EQ 258 QL AA 0 5027 DL 11-18-97 11-21-87 12 EQ 259 DL AA 0 5026 DL 11-18-97 11-21-87 13 EQ \$57 DL AA 0 5026 DL 11-18-97 11-21-87 14	
07 E Q 262 AA 0 503 11-18-87 11-21-87 08 EQ 262 ms AA 0 5032 ms 11-18-97 11-21-87 09 EQ 262 ms AA 0 5033 ms D 11-18-97 11-21-87 10 EQ 287 DL AA 0 5026 DL 11-18-87 11 EQ 288 Q AA 0 5027 DL 11-18-87 12 EQ 259 DL AA 0 5026 DL 11-18-87 13 EQ \$ 57 DL AA 0 5026 DL 11-18-87 14	
08	
09 FQ 262 MSD AAOSO33 MSD 11-18-87 11-21-87 10 FD 257 DL AAOSO26 DL 11-18-87 11-21-87 11 FD 258 OL AAOSO27 DL 11-18-87 11-21-87 12 FG 259 DL AAOSO26 DL 11-18-87 11-21-87 13 FQ \$57 DL AAOSO26 DL 11-18-87 11-21-87 11-21-87 11-21-87 11-21-87	
11 FQ 35F N AAO 5027 DL 11-18-87 11-21-81 12 FQ 359 DL AAO 5026 DL 11-18-81 11-21-81 13 FQ \$57 DL AAO 5026 DL 11-13-87 11-21-81 14	
12 FG 359 DL AAO SOJE DL 11-18-87 11-21-87 13 FG \$57 DL AAUSOJG DL 11-1387 11-21-87	
13 FQ \$ 57 OC AAUSONG DL 11-1387 11-21-87	
14	
·	
15	
16	
17	
18	
19	
20	
21 1	
22	
23	
24	
25	
26	

COMMENTS: The following symptes Eq 257, EQ 258, EQ 259 only Dilution extract
was used by Confirmation Column

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

ab Name: meta TRACE;	INC. Contract: 68-01-7	4/12
· code: meta case		SDG No.: <u>EQ257</u>
-1 •		ale TD: go Taylor Divis
fatrix: (soil/water) 5011	Lab Sam	ple ID: METHOD BCK
imple wt/vol:	(g/mL) Lab File	e ID: <u>>C/499</u>
evel: (low/med) LOW	Date Re	ceived: 10/27/83
. Moisture: not dec	Date An	alyzed: 1104/87
plumn: (pack/cap) PACK		n Factor:
4		IDITMO.
CAS NO. C	CONCENTRATION OMPOUND (ug/L or ug/K	
		1 1
74-87-3C		10 4
74-83-9B		1Q
75-01-4V		10 1
1 3E -00-3	ethylene Chloride	10 L
67-64-1A	cetone	10 U
75-15-0		5 4
	,1-Dichloroethene	5 14
	,1-Dichloroethane	<u> </u>
	,2-Dichloroethene (total)	<u> </u>
67-66-3		<u> </u>
1 107-06-21	,2-Dichloroethane	5 1 14 1
78-93-32	· · ·	10 4
	,1,1-Trichloroethane	<u> </u>
•	Carbon Tetrachloride	5_!!
108-05-4		10 4
	Bromodichloromethane	<u> </u>
	2.2-Dichloropropane	5 u
79-01-6		
	Dibromochloromethane	· 5 u
	,1,2-Trichloroethane	<u>5</u> <u>u</u>
71-43-2		<u>5</u> 4
10061-02-6	rans-1,3-Dichloropropene	5.10
75-25-2		5 1 1
	-Methyl-2-Pentanone	10 4
591-78-6		10 1
127-18-4		<u>5 u </u>
	1,1,2,2-Tetrachloroethane	5 4
108-88-3		<u>5</u> <u>u</u>
108-90-7(
100-41-4	Styrono	
1330-20-7		<u>5</u>
1	Trene (cocar)	<u> </u>
	1) Samo	Le Data Summery PKg.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.
1 VBLK!
SDG No.: EQ 257
e ID: METHOD BLANK
ID: >C1499
ived: 10/27/87 yzed: 11/84/87
yzed: //84/87 34487

ab Name: METATRACE, INC	contract: 68-01-7417 VBLK!
Th Code: META case No.: 8358	SAS No.: SDG No.: EQ 257
Matrix: (soil/water) SOIL	Lab Sample ID: METHOD BLANK
ample wt/vol:(g/mL) \(\frac{1}{2} \)	Lab File ID: >C1499
Level: (low/med) LOW	Date Received: 10/27/87
Moisture: not dec	Date Analyzed: 1184/87 1448
Column: (pack/cap) PACK	Dilution Factor:

Jumber TICs found:

CONCENTRATION UNITS: (ug/L or ug/Kg)//g/Kg

CAS NUMBER	COMPOUND NAME	R T	EST. CONC.	 Q =====
1.	NO PEAKS FOUND			
2.				
3		l		
4				<u> </u>
5		·		!
6				<u></u>
.				<u>'</u>
- 9.	_			¦
10.				·
11.				
_ 12				
13	_1			
. 14	_!			<u> </u>
15. ■16.	_			!
17.				ļ
18.				
19.				
20.				
?1				
22				
23.				
25. = 26.				
27.	-	·	}	
28.			1	
29.				¦
30.			i	¦
₽		i		'

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

efa sample no.	•
YBLKA	1

D May	me: Metalki	ACE, INC CO	ontract: 108-01-	19/t_ \	
Co	de: <u>metA</u>	Case No.: <u>8358</u>	SAS No.:	SDG No.:	E0857
•	: (soil/water			mple ID: MET	
mple	wt/vol:	(g/mL)	Lab Fi	le ID: _ >	C1526
vel:	(low/med)	LOW	Date R	eceived: 10	27/87
Mois	ture: not dec	•	Date A	nalyzed: _//	5/87
lumn	: (pack/cap)	Pack	Diluti	on Factor:	<u> </u>
		•	CONCENTRATIO	N UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/	Kg) ug/ty	Q
ı			1		1 1
1		Chloromethane			
Į		Bromomethane			<u> </u>
ļ		Vinyl Chloride_			
		Chloroethane			<u></u>
		Methylene Chlor	1de		<u> </u>
	67-64-1			26	!!
ļ		Carbon Disulfid			<u> </u>
ļ		1,1-Dichloroeth			<u> </u>
ļ		1,1-Dichloroeth			<u>u</u>
		1,2-Dichloroeth	eue (forgi)		<u> </u>
	•	Chloroform		<u>5</u>	<u> </u>
		1,2-Dichloroeth	ane	<u></u>	<u> </u>
		2-Butanone			<u> </u>
		1,1,1-Trichlord		<u> </u>	<u> 4 </u>
		Carbon Tetrachl	oride	<u> </u>	<u> </u>
		Vinyl Acetate	<u> </u>		إحسطا
	•	Bromodichlorome	··	<u> </u>	
r		1,2-Dichloropro		-	.]4]
		cis-1,3-Dichlor Trichloroethene		<u></u>	.]
•		Dibromochlorome		·	الما
	•	1,1,2-Trichlore			
į	71-43-2	• • • • • • • • • • • • • • • • • • • •	Culane		.
•		trans-1,3-Dichl	OYONYONANA		·!
		Bromoform	or obtobene		. _ <u>.</u>
1		4-Methyl-2-Pent	anone	10	-
l		2-Hexanone	~10116	10	
		Tetrachloroethe	ne ·	70	<u>u</u>
8		1,1,2,2-Tetrach			
	108-88-3	TODIOSE STAIL			
*		Chlorobenzene			
_	100-41-4	Ethylbenzene			<u> </u>
1	100-42-5	Styrene		5	<u> </u>
5 .	1 1330-20-7	Xylene (total)			<u> </u>
	,	"Treme (cocat)"		ت	I U I

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Tatum := == x	RACE, INC	Contract: 6	8-01-7417	APLES	
code: META	Case No.: 1358	SAS No.:	S:	ж ко.: <u>Ефа</u>	<u> </u>
atrix: (soil/wate	r) Sul	L	ab Sample :	D: Method I	Blank
Sample wt/vol:	(g/mL)	L	ab File ID	: >C15	26
evel: (low/zed)	LOW	D	ate Receiv	ed: 10/27/8	Ł
- Moisture: not de	:C	D	ate Analyz	ed: 115/87	
.olumn: (pack/car	») Pack	Ð	ilution Fa	ctor:	
Number TICs found	i: _O_		RATION UNI		
CAS NUMBER	COMPOUND !		•	EST. CONC.	
1. 2. 3. 4. 5. 6. 10. 11. 12. 13. 14. 15. 15. 16. 19.	NO PEAKS DETE	=======================================			
22. 23. 4. 25. 26.					
39					

VOLATILE ORGANICS ANALYSIS DATA SHEET

ab Name: meta TRACI	E, INC	Contract: 68-01-	7417 i VB	LK3
. code: META C		SAS No.:	SDG No.: _	EQ257
satrix: (soil/water)			mple ID: MET	HOD BLAN
_	(g/mL)	Lab Fi	le ID: >CI	542
evel: (low/med) \underline{l}	ow	Date R	Received: 10/	17/87
Moisture: not dec		Date A	malyzed: 11/0	6/87
ງlumn: (pack/cap) _	PACK	Diluti	on Factor:	
cas no.	COMPOUND	CONCENTRATION (Ug/L or Ug/	on units: (Kg) us/tg	Q ·
24.67.2	Chlava41		1	ļ
	Chloromethane_		10	_4_
	Bromomethane_ Vinyl Chloride	,		-4!
	vinyi Chloride Chloroethane		10	
1 75-00-2	Methylene Chlc	ride	10	3
67-64-1			110	
1 /5-15-11	Carbon Disulfi	de	1 5	
(=1)	1,1-Dichloroet		5	u [
	1,1-Dichloroet			u
	1,2-Dichloroet			4
67-66-3				<u>u</u>
	1,2-Dichloroet	:hane		- 4
78-93-3			·	-
	1,1,1-Trichlor	coethane	<u></u>	
1 56-23-5	Carbon Tetrach			
■ 1	Vinyl Acetate		10	<u> </u>
刊 75-27-4	Bromodichloron	nethane	5	<u> </u>
	1,2-Dichloropi			
	cis-1,3-Dichlo		5	<u>u</u>
	Trichloroether			<u>u</u>
	Dibromochlorom		· · ·	<u>u</u>
•	1,1,2-Trichlon		-	_ <u>\</u>
71-43-2			5	
LB	trans-1,3-Dich	loropropene	5	u
75-25-2		• • • • • • • • • • • • • • • • • • • •	5	u
	4-Methyl-2-Per	ntanone	10	- u
591-78-6			10	u
	Tetrachloroeth	iene	1	<u> </u>
	1,1,2,2-Tetra		j	
108-88-3			i	
	Chlorobenzene		j	1_141
	Ethylbenzene		5	_14
100-42-5	Styrene		j	
1 1330-20-7	Xylene (total)		;	<u>u</u>
	(00041)		i	
	1.2.1 A) Sam	ste Data Sum	new pkg.

lΕ VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

o Name:meto	TRACE, INC Contract	F14E-10-80:	V BLR3	
	Case No.: <u>8358</u> SAS No.			<u>}</u>
Matrix: (spil/wate	r) <u>Soil</u>	Lab Sample	ID: Method B	blank
Sample wt/vol:	(à\wr)	Lab File I	D: >C1542	
Level: (low/med)	Low	Date Recei	ved: 10/37/87	_
* Moisture: not de	:c	Date Analy	zed: 1100/83	<u>}</u>
Column: [pack/car	PACE PACE	Dilution F	ector:	
Number TIEs found		NTRATION UN		, ,
CAS NUMBER	COMPOUND NAME	•	EST. CONC.	Q !
	Unknown	1.55		5
	Ethane, 1,12-trichloro-1,2,2-trifluore		10	[_J]
3. 123° 11	14-Dioxane	14.05	32	
j 5	i			
5		-]]
â				
7 9				!i
10		-		¦
12.				
1 13.				i
15				
1 15.				!!
18			!	
1 19.				
20		-	!	' '
22.		_i		ii
23.		_]	!
		-;	<u> </u>	<u> </u>

25.

23.

SEMIVOLATILE METHOD BLANK SUMMARY

Lab Name: Me	otaTenne Tou	Cor	ntract: <u>68-01-7</u>	J/7		
			AS No.:		E0257	
, code. jug	ZIA Cuse	<u>6.328</u>			114	
Lab File ID: >DIS84 Lab Sample ID: BLANK \$3 101						
Date Extracted:						
Date Analyzed: Houfstry 12-487 Time Analyzed: 45 03:15						
Matrix: (soil/water) 501L Level: (low/med) Low						
Instrument I	D:	ns d				
THIS M	ETHOD BLANK A	APPLIES TO THE	FOLLOWING SAMPI	ES, MS AND	MSD:	
1	EPA	LAB	I LAB	DATE	1	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	į	
03.1			> D1579	= ======== 	· { 1	
01 02	EQ358	1_RR05027 RR05038	>D1580	1/2/187	. ! . {	
03	ECHUS I	AAO 5030	>01582	1/2//4	-	
04	FANA	PAU 5031	>DIS83	1/12/183	i	
05	EQQL2 ms	AA05032	>01586	11/2/187	- <u>}</u>	
06		AA05033	>01587	1 1/2/187	i	
07		AA05029	1 > D 15 X 1	1 1/2//87	İ	
08	£ 0.257	AA65026	> D1681	12/5/87	Ì	
09					1	
10			<u> </u>	.	1	
11		<u> </u>		_	.}	
12			<u> </u>	-!		
131]		-}	- !	
14			·	-	<u>.</u>	
15	\ <u></u>	{	\ <u></u>	- }	.	
16 17		! !		- }	- }	
18	<u> </u>	<u>'</u>		~ { 	·¦	
· 19		<u> </u>		-;	- i	
20	·		i	- j	- i	
21			1	Ì	<u>[</u>	
22	·		1		_1	
23	•	<u> </u>		_!	_ļ	
24	·]	.]	_]	.]	
25	·	<u> </u>	·	_!		
26	ļ	ļ			-!	
27 28	ļ	<u></u>	.]	-	-[
28	·		·		-	
30	·		-	-	-1	
			. 1		_ '	
COMMENTS:						

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	52	_				
Lab Na:	re: metaTRACE, INC contract: 18-0	<u>1-74/7</u>		3LK		
1-5 Code: META Case No.: \$358 SAS No.: SDG No.: FD257						
i - 5 co	•		_			
Matrix	: (soil/water) SOIL Lab Sa	mple ID:	<u> RI</u>	ANK 10	2	
Sample	wt/vol:(g/mL) Lab Fi	le ID:		D1670		
Level:	(low/med) LOW Date F	Received:	:			
* Mois	ture: not dec Date E	xtracted	:_///	1/87		
Extrac	tion: (SepF/Cont/Sonc) SONC Date A	nalyzed:	: IX/O	4/87		
GPC C1	eanup: (Y/N) pH: Diluti	on Facto	or: _1	<u> </u>		
	CONCENTRATIO	N UNITS	:			
	CAS NO. COMPOUND (ug/L or ug/	(Kg) uglt	4	Q		
,	ne of a Phanel	-				
, !	108-95-2Phenol 111-44-4bis(2-Chloroethyl)ether		30			
	95-57-82-Chlorophenol		330			
	541-73-11,3-Dichlorobenzene		3301 3301			
-1 ·	106-46-71,4-Dichlorobenzene		330			
	100-51-6Benzyl alcohol		330	<u></u>		
.i 1	95-50-11,2-Dichlorobenzene		330			
-,	95-48-72-Methylphenol		330			
i	108-60-1bis(2-Chloroisopropyl) ether		330	<u> </u>		
· ˈ i	106-44-54-Methylphenol	·	330			
· , • • • • • • • • • • • • • • • • • •	621-64-7N-Nitroso-di-n-propylamine	i	330	i		
ĺ	67-72-1Hexachloroethane		330	i		
- ¹	98-95-3Nitrobenzene	l	330	1 4		
1	78-59-1Isophorone	l	330	<u>u</u>		
i i	88-75-52-Nitrophenol	·	330	1_4_1		
」	105-67-92,4-Dimethylphenol		370	<u></u> _l		
}	65-85-0Benzoic acid	160		<u> </u>		
T I	111-91-1bis(2-Chloroethoxy)methane	!	330	<u></u>		
	120-83-22,4-Dichlorophenol	·	330			
_	120-82-11,2,4-Trichlorobenzene		330	!		
	106-47-84-Chloroaniline		330			
ق.	87-68-3Hexachlorobutadiene	4	<u>330</u>			
	59-50-74-Chloro-3-methylphenol		330 330	<u> </u>		
	91-57-62-Methylnaphthalene		330	<u> </u>		
1	77-47-4Hexachlorocyclopentadiene		330 330			
İ	88-06-22,4,6-Trichlorophenol	4	330 330			
,	95-95-42,4,5-Trichlorophenol	160		4		
,	91-58-72-Chloronaphthalene		30			
1	88-74-42-Nitroaniline	160		1//		
- 1 T	131-11-3Dimethylphthalate		30	الما		
1	208-96-8kcenaphthylene		30	I u I		
į	606-20-22,6-Dinitrotoluene		38	1_4_1		
9	· · · · · · · · · · · · · · · · · · ·	:		·		

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

· • • • • • • • • • • • • • • • • • • •		SBLK
Name: Mta TRNCE, INC Contrac	t: 68-01-7417	
code: MFTA Case No.: 8358 SAS No	spc spc	No.: EGAS
trix: (soil/water) SylL	Lab Sample ID	
mple wt/vol:(g/mL)	Lab File ID:	> D1670
vel: (low/med) LOW	Date Received	•
	Date Extracte	
Moisture: not dec dec		
traction: (SepF/Cont/Sonc) Soul	Date Analyzed	: 19104181
C Cleanup: (Y/N)' pH:	Dilution Fact	or:
	CENTRATION UNITS	
 99-09-23-Nitroaniline	1 16	00 11
83-32-9Acenaphthene		30 1 4
51-28-52,4-Dinitrophenol	1/0	00 u
100-02-74-Nitrophenol	16	00 I u
132-64-9Dibenzofuran		30 1 4
121-14-22,4-Dimitrotoluene		30 I u
84-66-2Diethylphthalate		330 I u
1 7005-72-34-Chlorophenyl-pheny		330 lu
86-73-7Fluorene		330 lu
100-01-64-Nitroaniline	1 16	00 14
534-52-14,6-Dinitro-2-methyl	phenol / //	00 14
86-30-6N-Nitrosodiphenylami		330 11
101-55-34-Bromophenyl-phenyl		330 I u
118-74-1Hexachlorobenzene		330 1 u
87-86-5Pentachlorophenol	1 160	0 1 4
85-01-8Phenanthrene	1 <u></u> _,	330 I u
120-12-7Anthracene		330_l_u_
84-74-2Di-n-butylphthalate		330 1 h
206-44-0Fluoranthene		330 h
129-00-0Pyrene		330 14
85-68-7Butylbenzylphthalate		330 1
91-94-13,3'-Dichlorobenzidi	ne	ED
56-55-3Benzo(a)anthracene	<u></u>	330 1
218-01-9Chrysene		330 6
117-81-7bis(2-Ethylhexyl)pht 117-84-0Di-n-octylphthalate	marare	330 u
205-99-2Benzo(b) fluoranthene		330 4
207-08-9Benzo(k) fluoranthene		330
50-32-8Benzo(a)pyrene	·	330 L
193-39-5Indeno(1,2,3-cd)pyre		330 4
53-70-3Dibenz(a,h)anthracen	ine	330 1 4
191-24-2Benzo(g,h,i)perylene		330 Ju

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EFA	SAMPLE	20
-----	--------	----

Lab Name: metaTRACE, INC contract:	68-01-7417 SBCK
Lab Code: META Case No.: \$358 SAS No.:	SDG No.: DD357
Matrix: (soil/water) 501L	Lab Sample ID: BLANK 101
Sample wt/vol:(g/mL)	Lab File ID: > D1670
Level: (low/med) LOW	Date Received:
* Moisture: not dec dec	Date Extracted:
Extraction: (SepF/Cont/Sonc) 50UC	Date Analyzed: 12/04/87
GPC Cleanup: (Y/N) pH:	Dilution Factor:

Number TICs found: 4 (ug/L or ug/Kg) w/Kg

 CAS NUMBER =========	COMPOUND NAME	 RT =======	EST. CONC.	Q =====
1. 108883	1 Ronzene method	1.20	5	7
1 2. 133439	1 2-Destrosse Sabudan danida	781	33	5
1 3.	Benzene, methyl 12-Pentacone, 4-hydroxy-4-mithyl 1 Unknown	1127		7
4	Unknown	27.57		7
5	1	1	<u>'</u>	
6.	· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·	
7.	· · · · · · · · · · · · · · · · · · ·	ì	`	
8.	1	i	<u></u>	
9.		i	<u> </u>	
10		i	i	
11	:	i	<u> </u>	i ——
1 12.		i	ì	i
) 13.		j	j	j
14.		1	ì	i
1 15.				i
1 10.		1	1	
17		!	1	j
18		1		1
19		1	1	1
20.		1	1	1
21.		1	1	1
] 22.		1	1	1
23.		1		i ———
, 24		1	1	1
25.		1		1
26.		1	1	1
27		1		i
1 28.		1		<u> </u>
5 29.		1	}	i
30.		1	1	i
1	1	1		i
				•

//		DIL
Lab Name: MEIATRACE Contract	:: <u>68-01-7417</u> <u> </u>	3LK!
1. Code: META Case No.: 835 & SAS No.	: SDG No.: /	Q257
Matrix: (soil/water) SOIL	Lab Sample ID:	10-PBIK 10
Sample wt/vol: (g/mL) &	Lab File ID:	
Level: (low/med) LOW)	Date Received: 10-2	27-87
% Moisture: not dec dec	Date Extracted: //-	22-87
Extraction: (SepF/Cont/Sonc) SonC	Date Analyzed: //-	<u>-17-87</u>
GPC Cleanup: (Y/N) V pH:	Dilution Factor:	1
CONC	ENTRATION UNITS:	
CAS NO. COMPOUND (ug/)	L or ug/Kg) UG/KG	Q
319-84-6alpha-BHC	8	1 0 1
319-85-7beta-BHC		i U
319-86-8delta-BHC		
		· '
58-89-9gamma-BHC (Lindane)		101
76-44-8Heptachlor		<u> U </u>
309-00-2Aldrin	\-\- <u>X</u>	<u> U </u>
1 1024-57-3Heptachlor epoxide	<u>}</u>	1
959-98-8Endosulfan I		`
60-57-1Dieldrin		<u> U </u>
72-55-94,4'-DDE		10
72-20-8Endrin		1_0_1
33213-65-9Endosulfan II		1_0_1
1 72-54-84,4'-DDD		<u> </u>
1031-07-8Endosulfan sulfate		1_1_1
50-29-34,4'-DDT 72-43-5Methoxychlor	111(8016	\ \
72-43-5Methoxychlor	18324 80	1-4-1
53494-70-5Endrin ketone	13, 60-16	-0-
5103-71-9alpha-Chlordane	! <u>%o</u>	· ' ——— '
5103-74-2gamma-Chlordane_	1 80	1_0_1
8001-35-2Toxaphene	160	
12674-11-2Aroclor-1016	1 80	1 1
11104-28-2Aroclor-1221	1 80	1 0 1
11141-16-5Aroclor-1232	80	1_0_1
53469-21-9Aroclor-1242		<u> U </u>
12672-29-6Aroclor-1248	1 80	1_U_1
1 11037-03-1	1_160	1_0_1
11096-82-5Aroclor-1260	1 /60	1 1 1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

	EPA SAMPLE NO.
1 1	EQ257:

ab Name: Meta TRACE, INC Contract: 68-01-7417 Code: META Case No.: 8358 SAS No.: SDG No.: E0357 Lab Sample ID: AA05024 Satrix: (soil/water) SOIL _(g/mL)_<u></u> Lab File ID: imple wt/vol: Date Received: _ 10/27/17 evel: (low/med) Low Date Analyzed: _//04/87 Moisture: not dec. 68.87 Dilution Factor: / lolumn: (pack/cap) PACK CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg CAS NO. COMPOUND 74-87-3-----Chloromethane 160 74-83-9-----Bromomethane 75-01-4-----Vinyl Chloride 160 75-00-3-----Chloroethane 75-09-2----Methylene Chloride 67-64-1-----Acetone 600 75-15-0-----Carbon Disulfide 75-35-4----1,1-Dichloroethene 80 75-34-3-----1,1-Dichloroethane 80 540-59-0----1,2-Dichloroethene (total) 80 67-66-3-----Chloroform 80 107-06-2----1,2-Dichloroethane 80 78-93-3----2-Butanone 160 71-55-6----1,1,1-Trichloroethane <u>80</u> 56-23-5-----Carbon Tetrachloride <u> 80</u> 108-05-4-----Vinyl Acetate 75-27-4-----Bromodichloromethane 80 78-87-5----1,2-Dichloropropane 10061-01-5----cis-1,3-Dichloropropene જ૦ 79-01-6----Trichloroethene 80 124-48-1-----Dibromochloromethane E0 79-00-5-----1,1,2-Trichloroethane 80 71-43-2----Benzene 80 10061-02-6----trans-1,3-Dichloropropene 80 75-25-2-----Bromoform 80 108-10-1----4-Methyl-2-Pentanone 160 591-78-6----2-Hexanone 160 127-18-4----Tetrachloroethene 79-34-5-----1,1,2,2-Tetrachloroethane 80 108-88-3----Toluene 108-90-7-----Chlorobenzene 80 100-41-4----Ethylbenzene 100-42-5----Styrene 1330-20-7-----Xylene (total) 80 Sample Data Sur

FORM I VOA

000016

1/87 Rev.

EPA SAMPLE NO

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

TENTATIVELY IDENTIFIED COMP	POUNDS EQAST
b Name: <u>metaTRACE, INC</u> Contra	act: <u>68-01-7417</u>
. Code: META Case No.: \$358 SAS N	No.: SDG No.: <u>E0257</u>
Satrix: (soil/water) SOIL	Lab Sample ID: AAOSO24
Sample wt/vol:(g/mL)	Lab File ID: >C1504
evel: (low/med) Law	Date Received: 10/27/87
: Moisture: not dec. 68.87	Date Analyzed: 1/04/87
column: (pack/cap) PACK	Dilution Factor:
	•

Number TICs found: 4

concentration units: (ug/L or ug/kg) w/kg

•			010	
CAS NUMBER	COMPOUND NAME	 RT =======	 EST. CONC. 	Q
1. 2. 3. 4. 5. 69097 6. 112538 7. 6. 112538 7. 6. 112538 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	COMPOUND NAME Unknown Unknown Unknown Unknown Cyclo hexane, (I-nethylethyl) Cyclo hexane, (I-nethylethyl) Cyclo hexane, (I-nethylethyl)	1.70 2.57 21.85 26.93 29.96 30.89	EST. CONC.	Q
29. 30.			0000	1.'7

1 B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Nar	ne: meta TRAI	LE . INC	Contract: 68-01	-74/17 E	1 + 26,6
		Case No.: 8358	SAS No.:	SDG No.:	E0257
• •					
Matrix	: (soil/water	1) <u>501</u>	Lab Sa	mple ID: A	405024
Sample	wt/vol:	30.11 (g/mL) y	Lab Fi	1e ID: >D	1681
Level:	(low/med)	Tom	Date R	eceived: 10/	27/87
% Mois	ture: not dec	c. 68.87 dec.	Date E	xtracted: 11/2	187
Extrac	tion: (SepF,	(Cont/Sonc) 50	NC Date A	nalyzed: 18/	04/87
GPC Cl	eanup: (Y/)	N) pH:	Diluti	on Factor:	1
			CONCENTRATIO	אינט אינ:	
	CAS NO.	COMPOUND	(ug/L or ug/	Kg) ug/Hg	Q
1	108-95-2	Phanol			1
:	-	bis(2-Chloroe	ethvllether	5700	
. I	95-57-8	2-Chlorophene	ol I	5760	4
İ		1,3-Dichlorol		570	i u i
·		1,4-Dichlorol		5760	4
		Benzyl alcoho		560	العا
i		1,2-Dichloro		5700	1_4_1
٦	95-48-7	2-Methylphene	01	560	<u> </u>
,		bis(2-Chloro		570	1_1_1
- I		4-Methylphen		560	استندا
-1	-	N-Nitroso-di		5760	1_4_1
اِ		Hexachloroet		57.0	1_4_1
		Nitrobenzene		560	<u> </u>
. ר	78-59-1	Isophorone		560	
		2-Nitropheno		57.0	امــا
·		2,4-Dimethyl		560	A
1		Benzoic acid		2700	
		bis(2-Chloro 2,4-Dichloro		560	
1.3		1,2,4-Trichl		560 560	1_4_1
15		Naphthalene		560	
•		4-Chloroanil	ine	5700	1 14
1.7		Hexachlorobu		560	1 14
٦,	-	4-Chloro-3-m		500	14
		2-Methylnaph		560	1 14
·	1 77-47-4	Hexachlorocy	clopentadiene	560	1.4
		2,4,6-Trichl		5/00	
	1 95-95-4	2,4,5-Trichl	orophenol	1 2700	
t = T	1 91-58-7	2-Chloronaph	thalene	1 560	1_4 1
		2-Nitroanili		1 2700	1 4 1
		Dimethylphth		560	1_4
		Acenaphthyle		540	1_4_1
	1 606-20-2	2,6-Dinitrot	oluene	540	1 4 1

בחחנו ד מייי

	0257
-7417 1	
_ SDG No.:	E0257
ple ID:	405026
e ID: >	D11981
ceived: _/o/	127/87
tracted:	12/87
nalyzed: _ <i>_12</i>	104/87
on Factor: _	
UNITS:	
0 0	12.7 St
	Ì
	1_41
	1_4!
	!_4!
	4_!
	-
	-\- <u></u> \
	-
	- _ <u>K</u>
	<u> </u>
	i_w_i
· 560	1 4 1
//00	14
560	14
560	141
4900	.11
5100	<u> _u _ </u>
	1_41
500	-!!
560	_!
	SDG No.: sple ID: _A e ID: _ > ceived: _ // ctracted: _ // nalyzed: _ // DN Factor: N UNITS: KG) _ \(\frac{1}{2} \) \

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EFA	SAMPLE	RO.

Lab Name: Meta TRACE, INC Contract	:68-01-7414
Lab Code: <u>META</u> Case No.: 8358 SAS No.	: SDG No.: <u>EQ257</u>
Matrix: (soil/water) 501L	Lab Sample ID: AAOSOJL
Sample =t, vol: 30.11 (g/EL) 9	Lab File ID: >D1681
Level: (low/med) Low	Date Received: 10/27/87
* Moisture: not dec. 6887 dec.	Date Extracted: 11/2/87
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed: # 12/04/27
GPC Cleanup: (Y/N) pH:	Dilution Factor:

Number TICs found: 20

CONCENTRATION UNITS:

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	 Q ====
1. 15849939	Octane 35-dimethyl	10.41	7300	J
2. 134:85	Decane	11.16	28000	1_2
3. 1730aard	Nongne, 2, 6-dimethy	11.61	9100	J
4	IHEPTANE 3,3 6-TRIMETHYL	11.71	. 8500	J
5. 544763	1 <u>Hexadecane</u>	11.83	9900	1 3
6	Unknown	11.92	16000	1 5
7. 17302328	Nonane, 3,7-dimethyl	12.15	7700	1-3-
8. 13151354	Decane, 5-methyl	12.24	13000	1_3
9. 6847725	1 Decane 4-methyl	12.30	1/000	1 5
10. 74645980	Didecane 2.7 10- trimethyl	12.37	12000	1_5
11. 13/5/343	Decane 3-nethyl	12.49	18000	1 3
12. 4926787	Cycloperane, 1-ethyl-4 methyl- ris-	12.86	6800	J
13- 1120214	1 Undecane	13.01	56000	1_7
14. 112 403	1 Doderane	13.32	15000	J
15	1 <u>Ua Known</u>	13.79	12600	1
16. 4941531	15-Undecane	14.05	12000	13
17. 51756195	11-Nona-3-one, 2-methyl	14.11	13000	1 5
18. 4127451	Cyclopropene, 1,12-trimethyl	2611	11000	13
19. 31295564	Didecane, d. l. 11- trinethyl	21.82	23000	1_5
20. 54833486	Heptadecane, 2.4,10,15- tetranethyl	23.07	29000	1.5
21				1
22.	1			1
23			1	1
24			1]
25.			[<u> </u>
26	1			i ——
27				i
28				<u> </u>
29				i
30				i
				i ———
• •	•		* 	·

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: METATRACE contract:	60-51-717 EQ 257
Lab Raise: // DITT AIR	<i>i</i>
1. Code: META Case No.: 835 \$ SAS No.:	
	Lab Sample ID: AA0502
Sample wt/vol: (g/mL) G	Lab File ID:
Level: (low/med) LOW)	Date Received: 10-27-87
* Moisture: not dec dec	Date Extracted: 11-0287
Extraction: (SepF/Cont/Sonc) SonC	Date Analyzed: 11-17-87
GPC Cleanup: (Y/N) ✓ pH:	Dilution Factor: .35
CONCEN	TRATION UNITS:
CAS NO. COMPOUND (ug/L	or ug/Kg) UG/KG Q
319-84-6beta-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane) 76-44-8Heptachlor 309-00-2Aldrin 1024-57-3Heptachlor epoxide 959-98-8Endosulfan I 60-57-1Dieldrin 72-55-9Endrin 33213-65-9Endosulfan II 72-54-8	640 U 640 U 640 U 6400 U 6
11097-69-1Aroclor-1254 11096-82-5Aroclor-1260	1,3 00 0 U
•	1 1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

1: ab Nai	me: <u>metaTRA</u>	CE, INC	Contract: 68-01-	7417 EQ	258	_i
		Case No.: \$358	SAS No.:	SDG No.: _	E0057	
_	: (soil/water	A		imple ID: Aft	05027	
-		52 (g/ml) g		le ID: >C		
1	(low/med)			Received: 10/2		
	ture: not dec	_	Date 2	Analyzed://d	24/8:7	
a slumn	: (pack/cap)	PACK		ion Factor:		
5	CAS NO.	COMPOUND	CONCENTRATIO		Q	
	74-83-9 75-01-4 75-00-3	Chloromethane Bromomethane Vinyl Chlorid Chloroethane Methylene Chl	Be	<u>N</u>		
THE TOTAL	67-64-1 -75-15-0 75-35-4 75-34-3		fide	160 35 1 7 1 7	 	
	67-66-3 107-06-2 78-93-3 71-55-6	Chloroform 1,2-Dichloroe 2-Butanone 1,1,1-Trichlo	ethaneoroethane	7 3 19 9		
1	108-05-4 75-27-4 78-87-5	Carbon Tetrac Vinyl Acetate Bromodichloro	e omethane propane	7 14 75 75		TOTAL ST
	79-01-6 124-48-1 179-00-5	cis-1,3-Dich Trichloroeth Dibromochloro	ene	7 24447 7 44447 7 4		
_ 5	10061-02-6-	Benzenetrans-1,3-Die				
	591-78-6 127-18-4	4-Methyl-2-Personne Tetrachloroe	then e	14 14 ±	_ <u>u_</u>	
3	108-88-3	1,1,2,2-Tetr Toluene Chlorobenzen	e	730	_4_	
	1 100-42-5	Ethylbenzene Styrene Xylene (tota		7 7 7	<u>u</u> <u>u</u>	
	1		· 1 5am	note Data Sum	-1	10.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		•	
1			
1			
1	FOR	K Z	

EPA SAMPLE NO.

: 68-01-7917
: SDG No.: <u>F6257</u>
Lab Sample ID: AAOSOD7
Lab File ID: >C1505
Date Received: 10/27/87
Date Analyzed: 11/04/87
Dilution Factor:

CONCENTRATION UNITS: Number TICs found: ___ (ug/L or ug/Kg) ug/kg

				- U	
CAS N	TUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	12925	1-Octadecarol	29.24	1100	1
2	l		 		
			j		
			!		
			<u> </u>		
8					
9	!				
10			<u> </u>		
, 12.					
13					
14			<u> </u>		
16			i		
17 18.					
19. -	·				
20.					
21. 22	·		ļ	· 	
23.	·			<u></u>	
24					
25. 26.			}	·	
27.					¦
28.					
30.					
				l	·
_		·			· '

FORM I VOA-TIC

•	VOLATI	LE ORGANICS ANAL	YSIS DATA SHE	ET			ر
iab Nai	me: <u>metaTr</u> f	ACE, INC	Contract: 68	-01-7417	EQC	2580C	/ - _
f Co	de: META	Case No.: §358	SAS No.:	SDG	No.: E	70357	
Vatrix	: (soil/water)	SOIL		Sample ID	: _AAO	5027	DL
imple	wt/vol:	(g/mL) 5		File ID:	•		~~~
Level:	(low/med)	Low	Dat	e Received	: _\u0/2	= (87	
. Mois	ture: not dec	. <u>30,15</u>	Dat	te Analyzed	: <u>11/05</u>	187	
z olumn	: (pack/cap)	PACK	Dil	lution Fact	or:	25_	
帮		•	CONCENTRA	ATION UNITS	:		
i d	CAS NO.	СОМРОИИВ		ug/Kg) ve	_	Q .	
, a						1	
1		Chloromethane	}		72 1	_4	
3		Vinyl Chloric	30		<u> </u>		
.Tea		Chloroethane					
1	_	Methylene Chi	loride		750	-	
म्बर	67-64-1	_		i	72	14	
		Carbon Disuli	fide	i	36	u	
i	75-35-4	1,1-Dichloroe	ethene	i	36	u	
	75-34-3	1,1-Dichloroe	ethane	1	36	u	
F		1,2-Dichloro	ethene (total)1	36 1	4	
, , [Chloroform_			<u> 36</u> 1	u	
3		1,2-Dichloroe	ethane	!	<u> </u>	4	
		2-Butanone			72.	<u>u</u>	
	_	1,1,1-Trichle			<u> 36 </u>		
a	•	Carbon Tetrac Vinyl Acetate			36	_ <u></u>	
.4		Bromodichlor		}	<u>72</u> 36		
		1,2-Dichloro			34	1/2	•
		cis-1,3-Dich			36	<u> </u>	7.
		Trichloroeth		i	36	1/	
		Dibromochlore		1		· · ·	-3
		1,1,2-Trichle	oroethane	S Ca	36 ··	'le'	4.4
- 3	71-43-2		ર્કે કુંદર સરકારે કે કેક્સ		34	<u>u.</u>	
		trans-1,3-Die	chloropropene		36	1_4_1	
		Bromoform]	. 36		
5	1 108-10-1	4-Methy1-2-Pe]	72		
		2-Hexanone	44		72	<u> </u>	
		Tetrachloroe			36	<u></u>	į •
	108-88-3	4/4/474-15616 	a-maroe mane		36	1-44	i I
•		Chlorobenzen	e		36	,	ļ
		Ethylbenzene		<u>-</u>	36	<u> </u>	! !
7	100-42-5	Styrene			36	- u	}
•		Xylene (tota	1)		.36	u	
	-						

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

EQ258 DL

o Name: <u>metaTRACE, INC</u> Contrac	t:18.01-3417 1
. code: META Case No.: 8358 SAS No	.: SDG No.: <u>EQ257</u>
(atrix: (soil/water) SOIL	Lab Sample ID: AAOSOJ7OL
<pre>:ample wt/vol:(g/mL)</pre>	Lab File ID: >C1535
evel: (low/zed) Low	Date Received: 10/27/77
Moisture: not dec. 30.15	Date Analyzed: 11/05/87
Tolumn: (pack/cap) PACK_	Dilution Factor:05

Number TICs found: 6 (ug/L or ug/Kg) 4/44

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
,	NO PEAKS DETECTED			===:
	The representation			;
	_	\\\\\\		i
·				;
5.	•	i	·	-
5.		\\	¦	i
•		<u> </u>	<u> </u>	i
6.		i	· · · · · · · · · · · · · · · · · · ·	i
9.		i		i
10		i	<u> </u>	i
12.		·i	<u> </u>	i —
2		1	i	i
13.]		i
14.				i
15.				1
15.	1	11		1
L7		1	1	1
.6.	_1	1	.	1
9.	_!		.	1
D		!	.]	!
?				i
<u>ز</u>			.	1
<u> </u>	_			1
· · ·		!	<u> </u>	1
		!	·	!
7				!
				!
: c			-!	<u> </u>
5.			.	!

							1	B	,
 _	_	_	_	_	_	 _	_	_	

		_		i EQ 258
Lab	Name:_	metalRACE, INC	Contract: <u>68-01-74/7</u>	

Case No.: 8358 SAS No.: ____ SDG No.: F0257 1-5 Code: META

Lab Sample ID: AAO 5027 Matrix: (soil/water) SOIL

>01579 30,15 (g/mL) a Lab File ID: Sample wt/vol:

Date Received: 10/27/87 (low/med) Level:

* Moisture: not dec. 30,15 Date Extracted: 11/2/87

Souc Date Analyzed: _///31/87 Extraction: (SepF/Cont/Sonc)

Dilution Factor: 10 -GPC Cleanup: (Y/N)

> CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg COMPOUND CAS NO.

4300 108-95-2----Phenol 111-44-4-----bis(2-Chloroethyl)ether 4300 95-57-8----2-Chlorophenol 4320 1 541-73-1----1,3-Dichlorobenzene 4300 1 136-46-7-----1,4-Dichlorobenzene 43001 100-51-6----Benzyl alcohol 43001 95-50-1-----1,2-Dichlorobenzene 43001 43001 95-46-7----2-Methylphenol 108-60-1----bis(2-Chloroisopropyl)ether_[106-44-5----4-Methylphenol 43001 621-64-7----N-Nitroso-di-n-propylamine *430*d 43001 67-72-1----Hexachloroethane 98-95-3-----Nitrobenzene 43001 76-59-1----Isophorone 43001 88-75-5----2-Nitrophenol 43001 43001 105-67-9-----2,4-Dimethylphenol 210001 65-85-0----Benzoic acid 111-91-1----bis(2-Chloroethoxy)methane 4300 120-83-2----2,4-Dichlorophenol 4300 1 120-82-1----1,2,4-Trichlorobenzene 4300 l 91-20-3----Naphthalene 43001 106-47-8-----4-Chloroaniline · 43001 87-68-3-----Hexachlorobutadiene 43001 59-50-7----4-Chloro-3-methylphenol 43001 91-57-6----2-Methylnaphthalene 430d 77-47-4----Hexachlorocyclopentadiene 43001 88-06-2----2,4,6-Trichlorophenol 95-95-4-----2,4,5-Trichlorophenol 21000 91-58-7----2-Chloronaphthalene 43001 88-74-4----2-Nitroaniline 2/000 131-11-3----Dimethylphthalate 43001 208-96-8-----Acenaphthylene 43001 606-20-2----2,6-Dinitrotoluene *43*601

Q

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

-b Name: meta TRACE; Two. contract: 68-01-75	E0258
-6 Name: Truck Infice Pre	
an court interior.	SDG No.: <u>E025</u> 3
Satrix: (soil/water) 501L Lab Sam	ple ID: <u>AA05027</u>
Sample wt/vol: 30.15 (g/mL) q Lab Fil	e ID: > <u>> D1579</u>
evel: (low/med) Low Date Re	ceived: <u>/6/37/87</u>
: Moisture: not dec. 30.15 dec. Date Ex	tracted: 11/2/87
Extraction: (SepF/Cont/Sonc) Souc Date Ar	alyzed: _//2//87
;PC Cleanup: (Y/N) pH: Dilution	on Factor: _o/D
CONCENTRATION	UNITS:
CAS NO. COMPOUND (ug/L or ug/F	(g) ug/kg Q
99-09-23-Nitroaniline	21000 u
83-32-9Acenaphthene	-4300 Lu
51-28-52,4-Dinitrophenol	21000 11
100-02-74-Nitrophenol	21000 U
132-64-9Dibenzofuran	4300 u
121-14-22,4-Dimitrotoluene .	4300 LU
84-66-2Diethylphthalate	4300 W
1 7005-72-34-Chlorophenyl-phenylether	4/300 4
86-73-7Fluorene	4300 14
100-01-64-Nitroaniline	21000 LU
534-52-14,6-Dinitro-2-methylphenol	21000 W
86-30-6N-Nitrosodiphenylamine (1)	43001 u 1
1 101-55-3(-Bromophenyl-phenylether	430pl u
118-74-1Hexachlorobenzene	43001 u 1
87-86-5Pentachlorophenol	<u>43001 u 1</u>
85-01-8Phenanthrene	<u>4300 u </u>
120-12-7Anthracene	4300 U
84-74-2Di-n-butylphthalate	4300 4
206-44-0Fluoranthene	430d u
85-68-7Butylbenzylphthalate	<u> 4300 u</u>
91-94-13,3'-Dichlorobenzidine	9200 u
56-55-3Benzo(a) anthracene	4300 u'
218-01-9Chrysene	1200
117-81-7bis(2-Ethylhexyl)phthalate	4300 u
117-84-0Di-n-octylphthalate	4300 u
205-99-2Benzo(b) fluoranthene	4300 4
207-08-9Benzo(k) fluoranthene	4300 U
50-32-8Benzo(a)pyrene	43001 4
193-39-5Indeno(1,2,3-cd)pyrene	4300 U
53-70-3Dibenz(a,h)anthracene	4300 U
191-24-2Benzo(g,h,i)perylene	43001 U
(1) - Cannot be senarated from Diphonylamine	

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	EFA	SAMPLE	RO.
1	EC	93 <i>58</i>	

Lab Name: Meta TRACE, Tuc Contract	: 68-01-7417
Control of the Contro	: SDG No.: <u>EQ257</u>
and the first in the same and t	
Matrix: (soil/water) Solk	Lab Sample ID: AAOSO27
Sample wt/vol: 30.15 (9/EL) 5	Lab File ID: >01579
Level: (low/med) Low	Date Received: 10/27/87
* Moisture: not dec.3015 dec	Date Extracted: 11/2/87
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed:
GPC Cleanup: (Y/N) pH:	Dilution Factor:

Number TICs found: 5

CONCENTRATION UNITS:

		·		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	• •
1	Benzene, methyl 12-Pentanone, 4-hydroxy-4-methyl 12-Known	4.36 7.98	12000 310 0 2200	<u>J, B</u> <u>J, A</u> , B <u>J</u>
i 5	Un Known	23.99	3000 -3000	3
6. 7. 8. 9.				
10. 111. 12.				
13. 14. 15.				
16 17 18.				
19. 20. 21. 22.				
23. 24. 25.				
26. 27. 28.				
29.	· · · · · · · · · · · · · · · · · · ·			

Lab Name: METATRACE Contract: 69-01-7417 EQ 358 I Code: META Case No.: \$75 SAS No.: SDG No.: \$6.57 Matrix: (soil/water) \$611 Lab Sample ID: \$4.0502 Sample wt/vol: \$30.15(g/mL)		brancing exemptes analists out	. 3	
Code: Case No.:	Lab Na	me: METATRACE Contract	: 69-01-7417 EQ 25	58
Level: (low/med) Cu) Date Received: Colored Co	1.2 Co	de: META Case No.: \$35 5 SAS No.	: SDG No.: \(\bar{\pi} \bar{\pi} \)	57
Date Received:	Matrix	: (soil/water) <u>SC/L</u>	Lab Sample ID: AA050	2
Date Received:	Sample	wt/vol: 30,15(g/mL) 6	Lab File ID:	
Extraction: (SepF/Cont/Sonc)			Date Received: 10-27-8	7
Extraction: (SepF/Cont/Sonc)	* Mois	ture: not dec. 30 dec.	Date Extracted: //-CJ-G	7
CAS NO. COMPOUND (ug/L or ug/kg) UG/KG Q 319-84-6	Extrac	tion: (SepF/Cont/Sonc) SCNC	Date Analyzed:	ラ
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 319-84-6alpha-BHC	GPC Cl	eanup: (Y/N) / pH:	Dilution Factor: /	
319-85-7beta-BHC				
50-29-34.4'-DDT	ļ	319-85-7		

:=J

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

ž ab Na	me: <u>metat</u>	ACE, INC	Contract: (8-01-	7417 EQ	
. Co	ode: META	Case No.: 8358	SAS No.:	SDG No.: _	F0257
•	c: (soil/water			ample ID: _AAC	5028
_		3,58 (g/mL) 5	Lab Fi	le ID: >C	1536
•		U		•	
evel:	(low/med)	LOW	Date 1	Received:/o/	<u>J.4/87</u>
Mois	sture: not dec	: 15.59	Date 2	Analyzed://p	4/87
•	n: (pack/cap)	PACK	Diluti	ion Factor:	L
h		•	CONCENTRATIO	ON UNITS:	
ij	CAS NO.	COMPOUND	(ug/L or ug,	(Kg) w/kg	Q
¥	1	Chlausiathau			
4	•	Chloromethane Bromomethane	<u></u>		-4
3	•	Vinyl Chlorid			
. A		Chloroethane	·e	1	
1		Methylene Chl	oride	70	4
Ä		Acetone	01.106	40	<u> </u>
Ā	•	Carbon Disulf	<u>.</u>	*	\
I	•	1,1-Dichloroe		<u> </u>	<u> </u>
শ্ৰ		1,1-Dichloroe		\ <u>_</u>	1 4
35		1,1-Dichloroe		1 8	
	-	•	rnene (roral)	· 	
	•	Chloroform	. 4 k >	8	<u>_u_</u>
1		1,2-Dichloroe	:cnane	<u> </u>	! <u>k</u> !
•	-	2-Butanone		(6	<u></u>
1		1,1,1-Trichlo		<u> </u>	<u> </u>
. ¥		Carbon Tetrac		8	1_14
- I		Vinyl Acetate		16	1_6_1
	-	Bromodichloro			<u></u>
		1,2-Dichloror		8	<u> 4 - </u>
		cis-1,3-Dichl		150 11:35 8	السطا
' .		Trichloroethe			1-4
		Dibromochloro		. (<u> </u>	<u> 4 7 7 7 7 7 7 7 7 7 </u>
4	79-00-5	1,1,2-Trichle		4	السا
, }			or grand the trible services of the	.!	<u>u</u>
	1 10061-02-6-	trans-1,3-Dic	chloropropene		1_4_1
-		Bromoform		18	1_4:1
Ì	1 108-10-1	4-Methyl-2-Pe	entanone	1 16	1_4
s, J		2-Hexanone		16	1_1_1
_		Tetrachloroet		18	1_4_1
	1 79-34-5	1,1,2,2-Tetra	achloroethane_	18	u
	108-88-3	Toluene	 -	1 16	1i
	_	Chlorobenzene		8	u
-	1 100-41-4	Ethylbenzene		8	n
i	1 100-42-5	Styrene		8	4
- 1	1 1330-20-7	Xylene (tota)	1)	8	4
-	[- `	•	j	· i
4				ale Nota	· · · · · · · · · · · · · · · · · · ·

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

IDENTIFI	ED COMPOUNDS	EQ259
UC	Contract: 6x-01-7417	

o Name: <u>metaT</u>	RACE, INC CO	ntract: <u>6x-01-7417</u>		1
. code: META	Case No.: \$358 5	AS No.:	sog No.: <u>Edds</u>	7
atrix: (soil/water	:) <u>Soll</u>	Lab Sample	ID: <u>A4058</u>)	8
ample wt/vol:	3.58 (g/ml) 5	Lab File I	D: 701536)
evel: (low/med)	U	Date Recei	ved: _10/27/87	<u>.</u>
Moisture: not dec	=. <u>15.59</u>	Date Analy	zed: 11/06/87	
Column: (pack/cap)		Dilution ?	factor:	-
Number TICs found	: _0	CONCENTRATION UP (ug/L or ug/Kg)		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
2. 3. 4. 5. 6. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.	NO PEAKS DETECT			
28.				

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Tab Name: meta TRACE Two Contract: 68-0	1-34/7 EQ259
The state of the s	
	SDG No.: <u>EQ357</u>
Matrix: (soil/water) SOIL Lab So	ample ID: <u>AA05038</u>
Sample wt/vol: 30.03 (g/mL) q Lab F.	ile ID: >01580
Level: (low/med) LOW Date 1	Received: 10/27/87
% Moisture: not dec. 15.59 dec. Date	Extracted: 11/2/87
Extraction: (SepF/Cont/Sonc) Sonc Date	Analyzed: 11/21/87
GPC Cleanup: (Y/N) pH: Dilut	ion Factor:
CONCENTRATION	ON UNITS:
CAS NO. COMPOUND (ug/L or ug	
	1 1
108-95-2Phenol	3800 4
111-44-4bis(2-Chloroethy1)ether 95-57-82-Chlorophenol	1 3800 4
541-73-11,3-Dichlorobenzene	
1 106-46-71,4-Dichlorobenzene	3800 u
1 300 51 6 Ferrul ploops	3800 4
95-50-11,2-Dichlorobenzene	1 <u>3800 u</u> 1 3800 u
95-48-72-Methylphenol	3800 4 1 3800 4 1
1 108-60-1bis(2-Chloroisopropyl)ether	
106-44-5	38001 4
621-64-7N-Nitroso-di-n-propylamine	
67-72-1Hexachloroethane	38001 4 1
98-95-3Nitrobenzene	1 38001 u
78-59-1Isophorone	138001 u [
88-75-52-Nitrophenol	1 35001 u
105-67-92,4-Dimethylphenol	3800
65-85-0Benzoic acid	1 b008/
111-91-1bis(2-Chloroethoxy)methane	1 3800 u
120-83-22,4-Dichlorophenol	1 38001 u 1
120-82-11,2,4-Trichlorobenzene	3800 L
91-20-3Naphthalene	38001 u
106-47-84-Chloroaniline .	300 u
87-68-3Hexachlorobutadiene	3800 u
59-50-74-Chloro-3-methylphenol	3800 L
91-57-62-Methylnaphthalene	3800 <u>u</u>
1 //-4/-4nexachiorocyclopentaglene	3800 u
88-06-22,4,6-Trichlorophenol 95-95-42,4,5-Trichlorophenol	3800 U
91-58-72-Chloronaphthalene	18000 4
88-74-42-Nitroaniline	3800 4
131-11-3Dimethylphthalate	1 18000 U 1
208-96-8Acenaphthylene	3800 U
606-20-22.6-Dinitrotoluene	3800 4

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

h Nar	ne: <u>Meta IRACE, INC</u> Contract: <u>los-DI-</u>	7917 1				
rab Coo	tab Code: META Case No.: 8358 SAS No.: SDG No.: EQ357					
1						
Sample	wt/vol: 30,03 (g/mL) 4 Lab Fi	le ID: 701580				
	$\boldsymbol{\sigma}$	eceived: 10/27/87				
5		xtracted: 11/2/57				
•						
1		nalyzed: 11/21/87				
GPC Cl	eanup: (Y/N) pH: Diluti	on Factor: 10				
n j	CAS NO. COMPOUND (ug/L or ug/					
1 !	99-09-23-Nitroaniline	1800 U				
	83-32-9Acenaphthene					
, 1	51-28-52,4-Dinitrophenol	1800 u				
	100-02-74-Nitrophenol	1800 U				
- i (132-64-9Dibenzofuran	380 Lu				
	121-14-22,4-Dimitrotoluene .	380 LU				
- 1 ³ -	84-66-2Diethylphthalate	380 I U				
	7005-72-34-Chlorophenyl-phenylether	380 4				
' 1 1	86-73-7Fluorene	380 4				
-1 i	100-01-64-Nitroaniline	1800 U				
· i	534-52-14,6-Dinitro-2-methylphenol					
, ,	86-30-6N-Nitrosodiphenylamine (1)					
4 i	101-55-34-Bromophenyl-phenylether	386 U				
	118-74-1Hexachlorobenzene	380 U				
	87-86-5Pentachlorophenol	1800 U				
	85-01-8Phenanthrene	380 V				
·-}	120-12-7Anthracene	380 Lu				
. }	84-74-2Di-n-butylphthalate	13000				
	206-44-0Fluoranthene .	380 Lu				
- 1	129-00-0Pyrene .	380 14				
	85-68-7Butylbenzylphthalate	· 380 1 4				
	91-94-13,3'-Dichlorobenzidine	740 1 4				
<i>-</i> − *	56-55-3Benzo(a) anthracene	1380 U				
, i	218-01-9Chrysene	380 Lu				
4	117-81-7bis(2-Ethylhexyl)phthalate	380 Lu				
_•.	117-84-0Di-n-octylphthalate	380 Lu				
	205-99-2Benzo(b) fluoranthene	380 0				
L	207-08-9Benzo(k) fluoranthene	380 Lu				
_•.	50-32-8Benzo(a)pyrene	30 14				
	193-39-5Indeno(1,2,3-cd)pyrene	380 Lu				
. 🔃	53-70-3Dibenz(a,h)anthracene	380 Lu				
Ī	191-24-2Benzo(g,h,i)perylene	380 1 1				
₹.	(1) - Cannot be conserted from Dieberg	ll				

1F

Number TICs found: 12

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MetaTRACE, INC	contract: <u>18-0-7417</u> EQ259
Lab Code: META Case No.: \$358	SAS No.: SDG No.: ER257
Matrix: (soil/water) SOIL	Lab Sample ID: AAOSO28
Sample wt/vol: 30.03 (g/mL) g	Lab File ID: >DIS86
Level: (low/med) <u>Low</u>	Date Received: 10/27/87
* Moisture: not dec. 15.59 dec.	Date Extracted: 11/2/87
Extraction: (SepF/Cont/Sonc) Son	C Date Analyzed: 11/21/87
GPC Cleanup: (Y/N) pH:	Dilution Factor:/O

CONCENTRATION UNITS:

COMPOUND NAME RT EST. CONC. CAS NUMBER 1. 57556 1.2-Propanedial 5200 2.108883 6.36 J/B! 12000 Benzene methyl 12-Pentanone, 4-Kydroxy-4-mothyl 7.98 3. 123422 11000 22,04 Unknown 1800 23.00 1800 Unknown 24.21 Unknown 2300 1)nKnown 27.55 2000 34.88 2000 Unknown 3232 1600 Unknown 10. 3800 Unknown 26.00 Unknown 26.08 12. 27.01 Unknown 5600 13. 14. □I 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

//	170,200
Lab Name: MEIATRACE Contract	: 68-01-7417 54 asy
1.4 code: META Case No.: 835 8 SAS No.	: SDG No.: 50.257
Matrix: (soil/water) SOIL	Lab Sample ID: AA05029
Sample wt/vol: 30.0 (g/mL) &	Lab File ID:
Level: (low/med) LOW)	Date Received: 10-27-87
* Moisture: not dec dec	Date Extracted: 11-0287
Extraction: (SepF/Cont/Sonc) SonC	Date Analyzed: 11-17-87
GPC Cleanup: (Y/N) V pH:	Dilution Factor:
CONCE	entration units:
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8beta-BHC 58-89-9gamma-BHC (Lindane) 76-44-8Heptachlor 309-00-2Aldrin 1024-57-3Heptachlor epoxide 959-98-8	95 U 95 U 95 U 95 U 95 U 95 U 95 U 95 U
11097-69-1Aroclor-1254 11096-82-5Aroclor-1260	1900 U
•	,

ab Na	me: <u>mcta T</u>	CACE, INC	Contract: [.8-0]-	7417 EQ	260.	. İ
. co	de: META	Case No.: \$358	SAS No.:	SDG No.: _	<u> EQ357</u>	
	: (soil/water			imple ID: AA		
imple	wt/vol:	5 (g/mL) 5	_ Lab Fi	le ID: _ >C	1507	
[evel:	(low/med)	LOW	Date F	Received:	17/87	
Mois	ture: not dec	. 12.57	Date 1	Analyzed: //	04/87	
olumn	: (pack/cap)	PACK	Diluti	ion Factor:	1	
	CAS NO.	сомроинд	CONCENTRATION (ug/L or ug/		Q 	
	74-83-9 75-01-4	Chloromethane Bromomethane Vinyl Chloride		 	 	
न्यस	75-09-2 67-64-1 75-15-0	Methylene Chl	ide	370 1/ 145	 	7-8-83
	75-34-3 540-59-0 67-66-3	l,1-Dichloroe l,2-Dichloroe Chloroform	thane thene (total)		 	
7	78-93-3 71-55-6	1,2-Dichloroe 2-Butanone 1,1,1-Trichlo Carbon Tetrac	roethane		_U	
À	108-05-4 75-27-4 78-87-5	Vinyl Acetate Bromodichloro 1,2-Dichlorop	methane ropane	11 6	<u>u</u> <u>u</u>	
3	79-01-6 124-48-1	cis-1,3-Dichl Trichloroethe Dibromochloro	ne · · · · · · · · · · · · · · · · · · ·		и " _и _и	
7	71-43-2 10061-02-6-	l,1,2-Trichlo Benzene trans-1,3-Dic		(((((((((((((((((((
***	108-10-1	4-Methy1-2-Pe 2-Hexanone Tetrachloroet			<u>u</u>	•
	79-34-5 108-88-3	1,1,2,2-Tetra Toluene Chlorobenzene	chloroethane	30	u	
	100-41-4	Ethylbenzene Styrene Xylene (total		\(\frac{\partial}{\partial}\)	и и	
	1		· 1) Sam	late Data Sum	1	1.

1E VOLATILE ORGANICS ANALYSIS DATA SHE TENTATIVELY IDENTIFIED COMPOUNDS

NICS ANALYSIS DATA SHEET	<u> </u>
IDENTIFIED COMPOUNDS	1
	1 EQ260 1

EPA SAMPLE NO.

D Name: META-TRACE, INC	Contract: 68-01-7417 EQ 260
. Code: META Case No.: 8358	SAS No.: SDG No.: <u>EQ 257</u>
Satrix: (soil/water) 501L	Lab Sample ID: AAOSO39
Sample wt/vol: 5 (g/mL) 5	Lab File ID: >C1507
Level: (low/med) Low	Date Received: 10/17/87
Moisture: not dec. 12.57	Date Analyzed: 11/04/87
Tolumn: (pack/cap) PACK	Dilution Factor:

Number FICs found: 2

CONCENTRATION UNITS: (ug/L or ug/kg) ug/kg

		·	0.0	<u></u>
CAS NUMBER	COMPOUND NAME	 RT ==	 EST. CONC. 	 Q
1	Unknown	19.18		1
2	Naknown	19.18	1 13	1 2
3			1	1
4.	!	1	1	1
5				!
6			!	!
<u> </u>				!
8			ļ	ļ
9			i	{
11			¦	!
12.			1	<u>'</u>
13.				i
14			1	i
15			i	1
15				l
17.			ļ]
18.				<u> </u>
19.			<u> </u>	!
21	-!	!		<u>'</u>
22.			1	¦
23			j	i
24		1		ì
25	_		!	
26. 27.	_		1]
23	_			\
29	_			<u> </u>
30.			!]
				
	!		!	1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EQ.2600L

EPA SAMPLE NO.

b Nat	me: <u>metalf</u>	LACE, INC	Contract: 18-01	7417	26000
Cod	de: META	Case No.: <u>\$358</u>	SAS No.:	SDG No.: _	FQ 257
trix	: (soil/water	1501L	Lab Sa	ample ID: AAO	502900
mple	wt/vol:	1.61 (g/mL)]	_ Lab F	le ID: >/	1537
	(low/med)	. •		Received: 10/2	7/87
Mois	ture: not dec	:.12.57	Date 2	Analyzed://o	6/87
ໃນໝກ	: (pack/cap)	PACK	Dilut	ion Factor:	05
	CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/		Q
	CAS NO.			J. T.	i,
1	74-87-3	Chloromethane		1 36	
i	74-83-9	Bromomethane_		36	4
i	75-01-4	Vinyl Chlorid	e	34	4
i		Chloroethane		1361	1 4 1
i	75-09-2	Methylene Chl	oride	1551	<u>B</u> 1
Ì		Acetone		136	1_4_1
i	75-15-0	Carbon Disulf	ide	18	1_4_1
1	75-35-4	1,1-Dichloroe	thene	18	1 4 1
1	75-34-3	1,1-Dichloroe	thane	1 /8	1 4 1
i	540-59-0	1,2-Dichloroe	thene (total)	18	1 4 1
Ì		Chloroform	-	18	U
į	•	1,2-Dichloroe	thane	18	i n
i		2-Butanone	**************************************	36	1 10
i		1,1,1-Trichle	proethane	18	iu
i		Carbon Tetrac		18	y
1		Vinyl Acetate		36	и
i		Bromodichloro		18	u
	<u> </u>	1,2-Dichlorop		18	1-1
1		cis-1,3-Dich		10	\- }:
	1 79-01-6	Trichloroethe	ene c	18	<u> </u>
1		Dibromochloro		2: 18	
1		1,1,2-Trichle		4.27.18 ×	1
	1 71-43-2	Benzene	2100 Ciliane	· ;	
		trans-1,3-Dic	chloropropopo	18	1-4-1
		Bromoform	nitor obtobene	18	<u> 4 </u>
!	-		antanono	18	<u>u</u>
		4-Methyl-2-Pe 2-Hexanone	surgitotie	31,	<u> </u>
1			hana	36	4_
	1	Tetrachloroet		<u> </u>	!!
i i		1,1,2,2-Tetra	curocoernaue	.]	
		Toluene		30 18 15	1 1/2
		Chlorobenzene	e	18	<u> </u>
•	1 100-41-4	Ethylbenzene		<u> </u>	1_u_1
į	100-42-5	Styrene		1	1_4_1
	1 1330-20-7	Xylene (tota)	L)	18	1
	t			role Data Sum	.i. i

1E

EPA SAMPLE NO. -

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	TENTATIVELY IDENTI		1 =: 0/AN
b Name: MC	A TRACE INC	Contract: 68-01-7417	EQ 260 AC

L	Code:	META	Case No.: 8358	SAS No.:	SDG No.:	EUDS7
---	-------	------	----------------	----------	----------	-------

Matrix: (soil/water) SOIL Lab Sample ID: AA05039 DL

Sample wt/vol: $\frac{|\psi|}{|\psi|} (g/\pi L) \frac{g}{g}$ Lab File ID: $\frac{2C1537}{2C1537}$

Level: (low/ped) Low Date Received: 10/27/17

* Moisture: not dec. 1257

Date Analyzed: Upu/87

- Column: (pack/cap) PACK Dilution Factor: .05

Number TICs found: (ug/L or ug/Kg) Wig

			0.0	·
CAS NUMBER	COMPOUND NAME	 	EST. CONC.	~
]		
1	YNO- HSL'S FOUND "		<u> </u>	
2.		i		
3.		1		
	.	1		
÷ ·	. [<u> </u>	<u> </u>	
<u> </u>		<u> </u>	·	
5		!	l	
•		l	!	
8		1		
9.		1	· 	
10.	·	;	<u> </u>	
		<u> </u>	ļ	
		!		
12			!	
13		Ì	1	
14	1	1	1	1
15.		i	1	
15.	·	<u> </u>	;	¦
17.	·	{	<u> </u>	·
18.		!	<u> </u>	
			l	·
19.			1	
20		}	1	!
21				
- 22.		i		·
23.	·	;	1	<u> </u>
724	·	!	!	!
25.	-	!		i
]	!	} •
40.]
_,27				<u> </u>
23.		i	!	!
729.	i		1	!
30.		·		!
	-	!		i
	.	1		}

SEMIUOIATIIF ORGANICS ANALYSIS DATA SHEET

SEMIVOLATILE ONGRETCES REVESTED	0.12.
Lab Name: meta TRACE, INC COI	ntract: 68-01-7417
Lab Maine: HIPIWININE DELIC	
1-5 Code: META Case No.: 8358 S.	AS No.: SDG No.: <u>EQ357</u>
Matrix: (soil/water) SOIL	Lab Sample ID: AA05029
Sample wt/vol: 30.21 (g/mL) 5.	Lab File ID: >D1581
Level: (low/med) Lau	Date Received: 10/27/17
* Moisture: not dec. 12.57 dec.	Date Extracted: 11/4/87
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed: 11/21/87
GPC Cleanup: (Y/N) pH:	Dilution Factor: 10
1	COUCENTRATION INITE.
	CONCENTRATION UNITS:
CAS NO. COMPOUND	(ug/L or ug/kg) ug/kg Q
	1 1
108-95-2Phenol	<u> </u>

		<u>۷</u> , ۲	
108-95-2	Phenol	3700	и
111-44-4	bis(2-Chloroethyl)ether	37001	u
	2-Chlorophenol	3700	u
541-73-1	1,3-Dichlorobenzene	37001	u
	1,4-Dichlorobenzene	37001	ia
100-51-6	Benzyl alcohol	37001	h
95-50-1	1,2-Dichlorobenzene	37001	u
95-48-7	2-Methylphenol	37001	11
108-60-1	bis(2-Chloroisopropyl)ether	37001	1.4
106-44-5	4-Methylphenol	37001	14
	N-Nitroso-di-n-propylamine	37001	u
67-72-1	Hexachloroethane	37001	u
98-95-3	Nitrobenzene	37001	14
78-59-1	Isophorone	37001	
	2-Nitrophenol	3700	u
	2,4-Dimethylphenol	37001	11
	Benzoic acid	18000	u
111-91-1	bis(2-Chloroethoxy) methane	3700	u
120-83-2	2,4-Dichlorophenol	37001	h
120-82-1	1,2,4-Trichlorobenzene	37001	14
91-20-3	Naphthalene	3700	4
106-47-8	4-Chloroaniline	3700	u
87-68-3	Hexachlorobutadiene	37001	
59-50-7	4-Chloro-3-methylphenol	3700	
91-57-6	2-Methylnaphthalene	3700	
	Hexachlorocyclopentadiene	3700	
88-06-2	2,4,6-Trichlorophenol	3700	
95-95-4	2,4,5-Trichlorophenol	18000	u
91-58-7	2-Chloronaphthalene	3700	
88-74-4	2-Nitroaniline	18000	
131-11-3	Dimethylphthalate	3700	- <u>6</u> -
208-96-8	Acenaphthylene	3700	
606-20-2	2,6-Dinitrotoluene	3200	

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

b Name: metaTRACE, INC contract: 68-01-	74/7
Lab Code: META Case No.: 8358 SAS No.:	SDG No.: <u>60.57</u>
Matrix: (soil/water) SOIL Lab Sa	mple ID: AAOSOO9
t	le ID: 301581
•	Received: 10/17/17
	•
Moisture: not dec. 12.57 dec. Date I	Extracted: 11/2/87
	analyzed: 11/21/87
GPC Cleanup: (Y/N) PH: Dilut:	ion Factor: 10
CAS NO. COMPOUND (ug/L or ug/	
99-09-23-Nitroaniline	18600
83-32-9Acenaphthene	3700
51-28-52,4-Dinitrophenol	18000 L
100-02-74-Nitrophenol	18000 L
132-64-9Dibenzofuran	3700 L
121-14-22,4-Dimitrotoluene	3700 L
64-66-2Diethylphthalate	1 3700 L
7005-72-3Fluorene	1 3700 w
100-01-64-Nitroaniline	3700 v
534-52-14,6-Dinitro-2-methylphenol	18000 Lu
532-32-1	
1 101-55-34-Bromophenyl-phenylether	1 3700 u
101-53-3	3700 u
87-86-5Pentachlorophenol	18000 L
65-01-8Phenanthrene	1 3700 4
120-12-7Anthracene	3700 4
84-74-2Di-n-butylphthalate	37000
206-44-0Fluoranthene .	3700 u
129-00-0Pyrene .	3700 m
85-68-7Butylbenzylphthalate	45000
91-94-13,3'-Dichlorobenzidine	7400 In
56-55-3Benzo(a) anthracene	1 3700 W
218-01-9Chrysene	1 3700 u
117-81-7bis(2-Ethylhexyl)phthalate	1 7000
117-84-0Di-n-octylphthalate	1370d_u_1
205-99-2Benzo(b) fluoranthene	3700 u
207-08-9Benzo(k) fluoranthene	3700 u
50-32-8Benzo(a)pyrene	137001 u
193-39-5Indeno(1,2,3-cd)pyrene	1 37001 u 1
53-70-3Dibenz(a,h)anthracene	1376Q u 1
191-24-2Benzo(g,h,i)perylene	1 3700 cm 1
(1) = Cannot be congrated from Diphonylamine	.

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Meta TRACE, INC Contr	act: 68-01-7417
	No.: SDG No.: EQ357
Matrix: (soil/water) SOIL	Lab Sample ID: AAOSO39
Sample =t/vol: 30.21 (g/mL) 1	Lab File ID: >0/58/
Level: (low/med) Low	Date Received: 10/27/87
* Moisture: not dec. 1257 dec.	Date Extracted: $\mu/2/87$
Extraction: (SepF/Cont/Sonc) 501C	Date Analyzed: 1/21/87
GPC Cleanup: (Y/N) pH:	Dilution Factor: 10

Number TICs found: 13

CONCENTRATION UNITS:

Number 1105 1001	(19) 2 (317	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1 1. 57556	1 1,2-Propanediol	5.61]]
1 2. 60355	1 Acetamice	6.21	60000	J
3. 141797	13- Penten-2-one, 4-methyl	7.00	3800	Ľ
4. 123422	1) Partamana 116 don - damet 1	1 775	1 .38000	1 7
5. 12.3422	2- Pentanone, 4-hydroxy 4-methyl 2-Pentanone, 4-hydroxy 4-methyl 2-Pentanone, 4-hydroxy-4-methyl	17.90 1794	8700	
6. 123422	12-Pentanone 4-hydroly-4-methyl	1-3-24	43000	J.A.L
7-123422	2- Penta none, 4 hydroxy - 4 methy!	P.00	60000	1_7_
8		1	1800	13
9. 57/03	Hexadecanoic acid	24.88	2600	1-7
10. 123795		1 29,21	3900	1 3
1 11. 115888	Phosphoric acid, octyl diphenyl estr	1 29.76	9500	1-7
12.	Unknown	33.95	3000	1-1
13.	Vaknown	38.50	2300	1-1
14.	-{	·	}	ļ
16	-	<u> </u>	[ļ
17	-{	<u> </u>	{	<u> </u>
18		·	¦	·
19	·'	i	<u>'</u>	¦
20	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
1 21.	1	i	<u> </u>	<u> </u>
1 22.	i	i	'	i
23.		i	<u> </u>	;
47.	1	i	<u>'</u>	<u> </u>
25.	1	i	<u> </u>	·
26.	1	i ———	i	¦
[4/		i	ì	}
1 28.		i ———	i ———	}
1 29		i	i	<u> </u>
30		i	<u> </u>	<u> </u>
1		i		<u> </u>
		•	•	

PESTICIDE ORGANICS ANALYSIS DATA SHEET

//		
Lab Name: MEIATRACE Cont	tract: 68-01-7417 EPab D	
1.7 Code: META Case No.: 835 & SAS		1
Matrix: (soil/water) SOIL	Lab Sample ID: AA0502	<i>C</i>
Sample wt/vol: 30,2 (g/mL) &	Lab File ID:	
Level: (low/med) LOW)	Date Received: 10-27-87	
* Moisture: not dec. 13 dec.	Date Extracted: 1/-0287	•
Extraction: (SepF/Cont/Sonc) SonC	Date Analyzed: 11-17-87	,
GPC Cleanup: (Y/N) V pH:	Dilution Factor:	
CAS NO. COMPOUND	CONCENTRATION UNITS: Q	
 319-84-6alpha-BHC	9 0	
319-85-7beta-BHC	<u> </u>	
319-86-8delta-BHC	<u> </u>	
58-89-9gamma-BHC (Lindan	(e) 9 1 U 1	
76-44-8Heptachlor	<u> </u>	
309-00-2Aldrin_	1 9 1 0 1	
1024-57-3Heptachlor epoxid	le	
959-98-8Endosulfan I		
60-57-1Dieldrin	1 /8 1 0 1	
1 72-55-94,4'-DDE	1 /8 1 / 1	
72-20-8Endrin	1 18 101	
33213-65-9Endosulfan II	1 18 10	
1 72-54-84,4'-DDD	1,10 101	
1031-07-8Endosulfan sulfat	e 18 U	
50-29-34,4'-DDT	1 <u>/8</u> 1	
72-43-5Methoxychlor	1 9a i U i	
53494-70-5Endrin ketone	19 19	
5103-71-9alpha-Chlordane	1 97 1 0	
5103-74-2gamma-Chlordane	1 92 1 0 1	
8001-35-2Toxaphene	1 180 1 0 1	
12674-11-2Aroclor-1016	1 42 1 11 1	
11104-28-2Aroclor-1221	92 U	
11141-16-5Aroclor-1232	<u> </u>	
53469-21-9Aroclor-1242	1 98 1171	
12672-29-6Aroclor-1248	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
11097-69-1Aroclor-1254		
11096-82-5Aroclor-1260	1 780 0	
1	ī 1 1	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

ab Name: metaT	PACE, INC	Contract: <u>68-01</u>	-7417 EQ		
. code: META	·	SAS No.:	SDG No.: _	0257	
fatrix: (soil/water	1501L	Lab Sa	imple ID: AAO	5030	
imple wt/vol:	474 (g/mL) g	Lab Fi	le ID: >0	1508	
Level: (low/med)	LOW	Date I	Received: 10/2	7/87	
. Moisture: not dec		Date A	Analyzed:	04/83	
olumn: (pack/cap)	MCK	Diluti	ion Factor:		
CAS NO.	СОМРОИИД	CONCENTRATION (ug/L or ug,		Q	
74-87-3	Chloromethane_		 <u> </u> a a	 	
75-00-3	Vinyl Chloride Chloroethane Methylene Chlo		12 12 230	h h	
67-64-1	AcetoneCarbon Disulf:		31 U		
75-34-3	l,l-Dichloroet l,l-Dichloroet l,2-Dichloroet	thane	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	K K U ·	
107-06-2	Chloroform 1,2-Dichloroe 2-Butanone		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>v</u> <u>u</u> <u>u</u>	{ { {
1 56-23-5	1,1,1-Trichlo Carbon Tetrack Vinyl Acetate	hloride	<u>u</u> <u>u</u> <u>12</u>	_ <u>u</u>	{ {
78-87-5	Bromodichlorop l,2-Dichlorop cis-1,3-Dichl	ropane	4	<u>u</u> .	l l l
79-01-6	Trichloroethe	ne: =: ::: methane	· · · · · · · · · · · · · · · · · · ·	u	
71-43-2	1,1,2-Trichlo Benzene trans-1,3-Dic		10 le		
75-25-2	Bromoform 4-Methyl-2-Pe	ntanone	13	u ii	Ì
1 127-18-4	2-Hexanone Tetrachloroet 1,1,2,2-Tetra	hene.	()	u	
108-88-3 108-90-7	Toluene Chlorobenzene		23		
100-42-5	Ethylbenzene Styrene Xylene (total		l, L,	4	1
		·	1 7 7 5	._ <u>u</u>	

1E

EPA SAMPLE	E NO.
------------	-------

VOLATILE ORGAN	ICS	ÄNALYSI	S DATA	SHEET
TENTATIVELY	IDE	NTIFIED	COMPOU	NDS

D Name: motaTRACE, The Co	ontract: 69-01-7417 EQ26
Code: META Case No.: 8358	
atrix: (soil/water) Soll	Lab Sample ID: AA05030
ample wt/vol: 4.74 (g/mL)	Lab File ID: >C/508
evel: (low/zed) Ldw	Date Receives: 10/27/87
Moisture: not dec. <u>8.53</u>	Date Analyzei: 11/04/87
olumn: (pack/cap) PACK_	Dilution Factor:

Number TICs found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg) w/kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown Unknown	_1_1.78	14	
2.	Unknown	1 25.34	14	IJI
3		_1	l	11
4 -		1		11
5				11
6		_		11
1				11
8	1		l	1!
9]	li
10.	_		1	!
11		·!		11
12.		_ !]	11
13.			l	ll
14		!		l!
15		_ !		ا <u></u> ا
15.		_!		11
17.		!		
- 18		_]		ll
19.		_!]	
22.			! 	:
22.		_!	! 	٠ ــــــــ ٠
			ļ	!i
24.	-		ļ	<u> </u>
25		!	<u> </u>]]
26.		!	!]
		-!	!	<u> </u>
27. _28				!;
29		_		i;
30.		-!		<u> </u>
~ ~ .	- <u>-</u>	_!	<u> </u>	<u> </u>
;			1	11

•

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: meta TRACE, INC CONTRACT: 68	1-01-7417 1
1-5 Code: META Case No.: 8358 SAS No.:	SDG No.: <u>EQ357</u>
Matrix: (soil/water) SOIL Lab	Sample ID: <u>AA05030</u>
Sample wt/vol: 3039 (g/mL) 1 Lab	File 10: >D1582
·	e Received: 10/27/87
	e Extracted: ///3/87
a .	e Analyzed:
•	ution factor: 10
	TION UNITS: .
•	ug/kg) ug/kg Q
 108-95-2Phenol	1 3600 L W 1
111-44-4bis(2-Chloroethyl)ether	3/00 11
95-57-82-Chlorophenol	111
541-73-11,3-Dichlorobenzene	136001 N 1
1 106-46-71,4-Dichlorobenzene	
1 100-51-6Benzyl alcohol	3600 u
95-50-11,2-Dichlorobenzene	3400 4
95-48-72-Methylphenol	3600 L
1 108-60-1bis(2-Chloroisopropyl)ethe	
106-44-54-Methylphenol 621-64-7N-Nitroso-di-n-propylamine	3400 _ 12
67-72-1Hexachloroethane	
9E-95-3Nitrobenzene	
78-59-1Isophorone	
88-75-52-Nitrophenol	3600 a
105-67-92,4-Dimethylphenol	36001 ul
65-85-0Benzoic acid_	170001 W1
111-91-1bis(2-Chloroethoxy)methane	e 3600 U
120-83-22,4-Dichlorophenol	
120-82-11,2,4-Trichlorobenzene	36001 4
91-20-3Naphthalene	
106-47-84-Chloroaniline	
87-68-3Hexachlorobutadiene	3600 4
59-50-74-Chloro-3-methylphenol 91-57-62-Kethylnaphthalene	3600 4
77-47-4Hexachlorocyclopentadiene	
88-06-22,4,6-Trichlorophenol	
95-95-42,4,5-Trichlorophenol	3600 u
91-58-72-Chloronaphthalene	17000 u 36001 u
88-74-42-Nitroaniline	1 17000 L
1 131-11-3Dimethylphthalate	36001 4
1 205-96-8Acenaphthylene	36001 14
606-20-22,6-Dinitrotoluene	36001 14

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

b Nar	ne: <u>metaTRACE, Inc</u> Contract: 108-01-	1-4/17 i	~~~
		SDG No.: _A	EQ257
		mple ID:	05730
•			
sample	wt/vol: 30.39 (g/mL) a Lab Fi	le ID: >D	2 89
Level:	(low/med) Low Date F	teceived: 10/	17/87
₹ Mois	ture: not dec. <u>8.53</u> dec. Date F	extracted: ///	2/87
Extrac	tion: (SepF/Cont/Sonc) Date A	inalyzed:	1/8-7
GPC Cl	eanup: (Y/N) pH: Diluti	on Factor:/	<u>) </u>
	CONCENTRATION (ug/L or ug/		Q
	99-09-23-Nitroaniline	<u> </u>	_u_1
į	83-32-9Acenaphthene	. 3400	<u>u_!</u>
} 1	51-28-52,4-Dinitrophenol	17000	<u>u</u> !
} [100-02-74-Nitrophenol	17000	<u>u</u>
	132-64-9Dibenzofuran mct	36001700	<u>u</u> !
••_ }	121-14-22,4-Dimitrotoluene	3600	4
	84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether	3600	<u>u</u>
	86-73-7Fluorene	3600 3600	:
3	100-01-64-Nitroaniline	17000	<u> </u>
	534-52-14,6-Dinitro-2-methylphenol	17000	u i
j (86-30-6N-Nitrosodiphenylamine (1)		u
9 j	101-55-34-Bromophenyl-phenylether	3400	u
•	118-74-1Hexachlorobenzene	3600	u i
;	87-86-5Pentachlorophenol	17000	4
. 1	85-01-8Phenanthrene	36001	<u>u</u>
ζ.	120-12-7Anthracene	3600	<u>u</u>
. !	84-74-2Di-n-butylphthalate	54000	!
_	206-44-0Fluoranthene	3600	
3 1	129-00-0Pyrene .	3600	<u> </u>
	85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine	14000	
	56-55-3Benzo(a) anthracene	7200	
3	218-01-9Chrysene	3600 J	
, .	117-81-7bis(2-Ethylhexyl)phthalate	5000	
	117-84-0Di-n-octylphthalate	3606	I
7 .,	205-99-2Benzo(b) fluoranthene	3600	
i	207-08-9Benzo(k) fluoranthene	3600	
	50-32-8Benzo(a)pyrene	3600	
,	193-39-5Indeno(1,2,3-cd)pyrene	3600	
1	53-70-3Dibenz(a,h)anthracene	3600	
¥ 2	191-24-2Benzo(g,h,i)perylene	3600	
1 .	(1)	1	
; \$	(1) - Cannot be separated from Diphenylamine	_	

1 F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MetaTRANE, INC Contract	: 18-01-7417 EQ261
Lab Code: META Case No.: 1358 SAS No.	: SDG No.: ED257
Matrix: (soil/water) Soil	Lab Sample ID: AA05030
Sample wt/vol: 3039 (g/mL) 9	Lab File ID: >DISBd
Scimpte way	
Level: (low/med) <u>low</u>	Date Received: <u>/0/27/87</u>
* Moisture: not dec. <u>8.53</u> dec	Date Extracted: "/2/87
	1 1 -
Extraction: (SepF/Cont/Sonc) Sonc	Date Analyzed: 11/21/87
	A
GPC Cleanup: (Y/N) pH:	Dilution Factor: ,D

Number TICs found: 12

CONCENTRATION UNITS:

			41.0	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1 1. 57556	1,2-Propanedid	5.62	35000	i
1 2. 60355	He attachiale.	6.24	23000	1
1 3. 544250	1,3,5, Caclohentratriene	6.36	2600	$\lfloor \frac{1}{2} \rfloor$
1 4. 141797	13-Penten-2-one, 4-methyl	7.03	1600	1_2
1 5. 123422	12-Pentanone, 4-hydroxy-4-methyl	790	9600	1 7 1
£6. 123422	12-Perdahone, 4-hydroxy-4-methyl	794	18000	J.A.K
1 7. 123422 110 5. 367124	12-Pentanone, 4-hydroxy-4-methyl	8.00	37000	JA,
140 3 7/24	+ Phonol - 2 - Phono	8.66	2000	1-3-15
14	Unknown	8.70	4200	J-13
10. 3581893	Thiazole, 5-methyl	10.70	1500	3
111	Vaknown	1076	2800	131
12	Unknown	30.70	1800	J
13.				i
1 14.				i
15				i i
16.		1		i — i
17		i		ii
18.		i	' 	ii
19	·	i		;;
20	· '	i		;;
21		<u> </u>		;;
22		<u> </u>	·	<u> </u>
1 23.		<u> </u>	} !	<u> </u>
1 24.		1	·	!!
25.		<u> </u>	(<u> </u>
1 26.		<u> </u>		!!
27.		!		!!
		!		11
1 28.		!		1
29.]		11
30.		1		11
		1	· · · · · · · · · · · · · · · · · · ·	1

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: METATRACE Contract:	:68-01-7417 F	EQ261
1. Code: META Case No.: 835 & SAS No.		
Matrix: (soil/water) SOIL	Lab Sample ID: _	
Sample wt/vol: 30.4 (g/mL) 6	Lab File ID:	
Level: (low/med) LOW)	Date Received:	027-87
* Moisture: not dec. 8,5 dec.	Date Extracted:	11-0281
Extraction: (SepF/Cont/Sonc) SonC	Date Analyzed:	11-17-87
GPC Cleanup: (Y/N)	Dilution Factor:	
CAS NO. COMPOUND (ug/L	ntration units: or ug/kg) <u>UG/KG</u>	? Q
 319-84-6alpha-BHC 319-85-7beta-BHC	9,0	
319-85-7	9.0	 -
58-89-9gamma-BHC (Lindane)	9.0	ーー
76-44-8Heptachlor	j 9.0	<u>i U</u> i
1 309-00-2Aldrin	1 9.0	
1 1024-57-3Heptachlor epoxide	1 9.0	-1 U 1
959-98-8Endosulfan I	12:187 17:0 9.	0 1 0
60-57-1Dieldrin	<u> 17.0</u>	!!
1 72-55-94,4'-DDE		!_+!!
72-20-8Endrin		!!
33213-65-9Endosulfan II	17,0	
72-54-84,4'-DDD		- -
1031-07-8Endosulfan sulfate		$-\left \frac{U}{U} \right $
50-29-34,4'-DDT 72-43-5Methoxychlor	87.0	
53494-70-5Endrin ketone	17.0	
5103-71-9alpha-Chlordane	I	
5103-74-2gamma-Chlordane	1 \$7.0	
8001-35-2Toxaphene	180	
12674-11-2Aroclor-1016	1 87	
11104-28-2Aroclor-1221	1 87	
111141-16-5Aroclor-1232	87	
53469-21-9Aroclor-1242	1 87	
12672-29-6Aroclor-1248	1 87	
11097-69-1Aroclor-1254	1 180	
11096-82-5Aroclor-1260	1 100	ーレノー

18 VOLATILE ORGANICS ANALYSIS DATA SHEET

ab Na	me: metaTRF	ACE, INC	Contract: <u>U8-01</u>	7417 EQ	262	I
		Case No.: 8358	SAS No.:	SDG No.: ¿	W257	
•	: (soil/water			mple ID: AA		
		4.44 (g/mL) g		le ID:		
	(low/med)	Ø	Date R	eceived: <i> 0 </i>	127/87	
	ture: not dec	•		nalyzed: <u>///</u> 0		
	: (pack/cap)			on Factor:		
J CLAIN	(pass, sap,		CONCENTRATIO	ים ואודים.		
d Si .	CAS NO.	Сомьопир	(ug/L or ug/		Q	
4 4		Chloromethane_		14		
		Bromomethane Vinyl Chloride		14	_u_	l
	75-00-3	Chloroethane		11		12-9-47
3	75-09-2 67-64-1	Methylene Chlo Acetone	oride	350 X Hb	1 1 1 1 1	1
स	75-15-0	Carbon Disulfi		7	1 4	ĺ
ব্ৰ		l,l-Dichloroet l,l-Dichloroet		7	1-h	} {
		1,2-Dichloroet		7	1 1	ĺ
	•	Chloroform	-	1	1_1/4_	ĺ
賽		1,2-Dichloroet	:hane	<u> </u>	<u> </u>	!
77	-	2-Butanone 1,1,1-Trichlor	coethana	14	1.	1
		Carbon Tetrach		7	1-4-	1
A		Vinyl Acetate		14	_W	ì
44	1 75-27-4	Bromodichlorom	methane	7	<u> </u>	i
J	78-87-5	1,2-Dichloropa	copane	1 7	1_4_	i .
1	1 10061-01-5-	cis-1,3-Dichlo	propropene	7	1_1/	Ì
44		Trichloroether		<u> </u>	1_6_	
.'	•	Dibromochlorom		7		
		1,1,2-Trichlor Benzene	roetnane	\ <u>```</u>	! <u> </u>	
מין		trans-1,3-Dich	Joronrono	7 .7		Į.
- J		Bromoform	rror obt obene	<u> </u>	<u> </u>	.1
-		4-Methyl-2-Per	ntanone	174	1 4	, (
7 1	591-78-6	2-Hexanone		14	<u> </u>	1
'		Tetrachloroeth		7	1 1	, ì [
		1,1,2,2-Tetra		1 4	1 V.	, t L
	108-88-3	Toluene		1d	1	ì
ي.	108-90-7	Chlorobenzene		7		Ì
-70	100-41-4	Ethylbenzene_		7	1_1~	i i
4	100-42-5	Styrene		1	l iu	İ
1	1 1330-20-7	Xylene (total)]	4	1
7	1		·	1	.1	ا.
R _		grane. s		ple Data Sum	may	Ka.
, - -		FORM	I VOA	ranga da sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran s Sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sangaran sa	· · ·	
70		. John	_ TOA	***		7 Rev.
¥ .				00008	9	- 7

EPA SAMPLE NO.

1E

Number TICs found:

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

E	Q	26	7	

b Name: meta TRACE, INC Contract	t: 68-01-7417
L Code: META Case No.: £358 SAS No.	.: SDG No.: <u>EQ357</u>
Matrix: (soil/water) SOIL	Lab Sample ID: AAOSO31
Sample wt/vol: 444 (g/mL) 9	Lab File ID: >C1509
Level: (low/med) Low	Date Received: _/D/27/87
Moisture: not dec. 16.40	Date Analyzed: 11/04/87
Column: (pack/cap) PACK	Dilution Factor:
a ·	•

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg

•			<i>פ</i> י <i>ו</i>	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	. ~
1. 508-4039	1-Decene, 3,4-dimethyl		300	
3				
5				
8.				
9.				
10.				
13				
15				
16. 17. 18.				
19.	•			
21.		-		
23.				
25				-
27.		<u> </u>		
29. 30.				
		i		i

VOLATILE ORGANICS ANALYSIS DATA SHEET

	ie: Iruja Ki	ACE, INC C	ontract: 168-61-	7417	36236	1
		Case No.: 8358			EQ257	
	(soil/water			mple ID: AAo		
le	wt/vol:	(g/mL)	Lab Fi	le ID: >(1545	-
	(low/med)	J	Date R	eceived: 10/2	7/87	
ist	ure: not dec	. 16.70	Date A	nalyzed:///	04/87	
: תמו	(pack/cap)	PALK	Diluti	on Factor:	05	
_	CAS NO.	COMPOUND	CONCENTRATIO		Q	
1	_	Chloromethane	1	40	_u_	
- 1		Bromomethane	l	60		
		Vinyl Chloride_		<u> </u>	_4	
1		Chloroethane		60		
ļ		Methylene Chlor	1de	180		
ļ		Acetone Carbon Disulfid		1100 40H		1/2-7-1
•	• •			30	4	!
į,		1,1-Dichloroeth		30	<u> </u>	į
į		1,1-Dichloroeth		30	<u>u</u>	l
l i		1,2-Dichloroeth Chloroform	iene (rocar)	30	4	<u>!</u>
į		1,2-Dichloroeth	370	30		}
1	78-93-3	2-Butanone	19116	30		l 1
i		1,1,1-Trichlord	ethane	<u></u>	-14-	l (
		Carbon Tetrachl		30	<u> </u>	(1
i	108-05-4	Vinyl Acetate_		60	4	t 1
i		Bromodichlorome	thane	30		l i
i i		1,2-Dichloropro		.30	- u .	ί 1
i		cis-1,3-Dichlor		30	<u>u</u>	
į		Trichloroethene		30	u	12
ĺ	124-48-1	Dibromochlorome	thane	30	1	
Í		1,1,2-Trichloro			u	
ı	71-43-2	Benzene		30	4	
Į		trans-1,3-Dichl	oropropene	30	1 4	ì **•
ļ		Bromoform_		30	l u	Ì.
į	108-10-1	4-Methyl-2-Pent	anone'	60	U	
į	591-78-6	2-Hexanone	* - · ·	60	1 4	
ļ	127-18-4	Tetrachloroethe	ene.	30	<u>u</u>	1
ļ	/9-34-5	1,1,2,2-Tetrach	loroethane	30	1_4	1
ļ	108-88-3	Toluene	······	30	1_4_	1
Į		Chlorobenzene		30	1_4	1
ļ	100-41-4	Ethylbenzene		30	1	ĺ
- 1	100-42-5	Styrene Xylene (total)		30	1 4	ŧ
1						

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	i i
D Name: Meta TRACE Tuc Contract:	68-01-7417 EQ 262 OL
code: META Case No.: 8358 SAS No.:	sog No.: EQAST
etrix: (soil/water) Soil	Lab Sample ID: AA05031D4
cample wt/vol: 1 (g/mL) q	Lab File 10: >C1545
evel: (low/zed) <u>tow</u>	Date Received: 10/27/87
Moisture: not dec. 16.70	Date Analyzed: 11/06/87
Column: (pack/cap) PACK	Dilution Factor: _05

Number TICs found:

CONCENTRATION UNITS:

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	_
1	No PEAKS DETECTED]	
2.	1			
3.		1		
4		_!	1	
5]		
5				
a.				
9.			. •	¦
0	·	~ <u>`</u>	<u> </u>	
. L •		·		i
2]	
. 3		_	1	l
4		!		<u> </u>
5		}		<u> </u>
5				!
8			·	¦
9.	- 		·	¦
D		<u> </u>	· j	¦
		i	1	•
2	~	!		1
3. 4.			-	!
5		 }	-	!
6.				<u> </u>
7				<u> </u>
3.			-	!
9			-	
0		1	- 	;

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

lab Nam	ne: meta IRACE, INC Contract: 68-0	11-74/7 EQ262
	le: META Case No.: 8358 SAS No.:	
• '		
Matrix:	(soil/water) SOIL Lab S	ample ID: AHOSO31
Sample	wt/vol: 30.02 (g/mL) g Lab F	ile ID: >01583
Level:	(low/med) LOW Date	Received: 10/27/87
& Moist	ture: not dec. 16.7 dec. Date	Extracted: ///2/87
Extrac	tion: (SepF/Cont/Sonc) Onc Date	Analyzed:
GPC Cl	eanup: (Y/N) pH: Dilut	ion factor: <u>•10</u>
i	CONCENTRATI	ON UNITS:
I		1/Kg) ug/kg Q
1	105-95-2Phenol	1 3900 L 4 L
) [111-44-4bis(2-Chloroethyl)ether	3900 4
., 1	95-57-82-Chlorophenol	3900 I u I
	541-73-11,3-Dichlorobenzene	1 3900 1 u 1
1	106-46-71,4-Dichlorobenzene	1 3900 LU
i	100-51-6Benzyl alcohol	1 3900 Lu
1	95-50-11,2-Dichlorobenzene	1 39001 4 1
, i	95-48-72-Methylphenol	3900 Lu
į	108-60-1bis(2-Chloroisopropyl)ether	
¬ i	106-44-54-Methylphenol	3900 u
į	621-64-7N-Nitroso-di-n-propylamine	3900 Lu
Ì	67-72-1Hexachloroethane	1 3900 LU 1
ŋ [98-95-3Nitrobenzene	3900 1 11
į	78-59-1Isophorone	1 39001 u 1
1	86-75-52-Nitrophenol	13900 u
,	105-67-92,4-Dimethylphenol	1 3900 u
1	65-85-0Benzoic acid	1 19000 u
'	111-91-1bis(2-Chloroethoxy)methane_	
e e e e	120-83-22,4-Dichlorophenol	_!
ļ	120-82-11,2,4-Trichlorobenzene	1 3900 u
.)	91-20-3Naphthalene	3800
	106-47-84-Chloroaniline	3900 u
	87-68-3Hexachlorobutadiene	3100 Lu
	59-50-74-Chloro-3-methylphenol	39001 h
_	91-57-62-Methylnaphthalene	3900 L
-9 -	77-47-4Hexachlorocyclopentadiene	3900 u
	88-06-22,4,6-Trichlorophenol 95-95-42,4,5-Trichlorophenol	_ 3500 _4_
	91-58-72-Chloronaphthalene	- 1 /9000 u
i	88-74-42-Nitroaniline	39001 u
	131-11-3Dimethylphthalate	19000 4
	208-96-8Acenaphthylene	1 3900 u 1 3900 u 1
	606-20-22,6-Dinitrotoluene	
	1	-\3900\-V_\

-b Name: meta TRACE, INC Contract: 68-01-	74/7 EQ262
	SDG No.: <u>E0257</u>
	imple ID: Anoso31
	ile ID: >D1583
ampi d	
evel: (low/med) LDW Date 1	Received:
Moisture: not dec. 16.7 dec. Date	Extracted: ///87
xtraction: (SepF/Cont/Sonc) SONC Date	Analyzed: ///2//87
PC Cleanup: (Y/N) pH: Dilut	ion Factor:
CAS NO. COMPOUND (ug/L or ug/	ON UNITS: /Kg) /ky Q
99-09-23-Nitroaniline	119000 u
83-32-9Acenaphthene	3900
51-28-52,4-Dinitrophenol	19000
132-64-9Dibenzofuran	1 1900 u 3900 u
132-64-9	3900 L
84-66-2Diethylphthalate	3900 1 (1
7005-72-34-Chlorophenyl-phenylether	3900
86-73-7Fluorene	3900 4
100-01-64-Nitroaniline	19000 u
534-52-14,6-Dinitro-2-methylphenol	19000 L
86-30-6N-Nitrosodiphenylamine (1)	3900 4
101-55-34-Bromophenyl-phenylether	39001 4
118-74-1Hexachlorobenzene	3900 4
87-86-5Pentachlorophenol	19000 u
85-01-8Phenanthrene	1 3900 4
120-12-7Anthracene	139001 u 1
84-74-2Di-n-butylphthalate	11
206-44-0Fluoranthene .	139001_u_1
129-00-0Pyrene .	3906 L
85-68-7Butylbenzylphthalate	36000
91-94-13,3'-Dichlorobenzidine	1 7700 Lu
56-55-3Benzo(a)anthracene 218-01-9Chrysene	3900 u
117-81-7bis(2-Ethylhexyl)phthalate	3900 4
117-84-0Di-n-octylphthalate	3300 5
205-99-2Benzo(b) fluoranthene	3900 u
207-08-9Benzo(k) fluoranthene	3900 <u>u</u> 1
50-32-8Benzo(a) pyrene	,
193-39-5Indeno(1,2,3-cd)pyrene	3900 u 3900 u
53-70-3Dibenz(a,h)anthracene	3900 u
191-24-2Benzo(g,h,i)perylene	364
1	3700 u
(1) - Cannot be separated from Diphenylamine	· · · · · · · · · · · · · · · · · · ·

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

NDS	1
: 68-01-74/7	E0363
120 121 11	'

Lab Name: MetaTRACE, INC contract:	168-01-74/7 1 CUOUD
Lab Code: META Case No.: 9358 SAS No.:	: SDG No.: <u>EQJS</u> }
Matrix: (soil/water) 2011	Lab Sample ID: AAOSO31
Sample wt/vol: 3002 (g/mL) 4	Lab File ID: >D1583
Level: (low/med) <u>UW</u>	Date Received: 10)27/87
* Moisture: not dec. 10.7 dec.	Date Extracted: 11/2/87
Extraction: (SepF/Cont/Sonc) Sok	Date Analyzed: 11/3//87
GPC Cleanup: (Y/N) pH:	Dilution Factor: ./O

Number TICs found: 13 CONCENTRATION UNITS: (ug/L or ug/kg) w/kg

			010	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 57556	1,2-Propanediol	5.61	55000	4
1 2. 60355	Acetomide:	1_6.19	48000	13
1 3. 14/797	3-Penten-2-one, 4-methyl 2-Pentanone, 4-hydroxy-4-methyl	1-7.00	1_2200	1
1 4. 103422	12-Pentanone 4-hudroxy-4-methyl	1 7.74	1 :21000	1 5
1x5. 123422	12-Pentanone, 4-hydroxy - 4-methyl	1 7.89	1 4400	1 1
do 6. 123422	12-Penjanone, 4-hodrody-4-methyl	7.92	1 16000	J
1 7. 123422	12. Pentanone, 4-history-4 methy/	17.99	52000	JA
b(8-31-7124	1 Phynot, 2 Hoors (sungers)	1847	5100	13
1/9-36764	Physical 2- flyngs 1 houseles	1865	2100	1
1 90. 36,7724	Phenot, 2 flyoro (majora) Thiazole, 5-methyl	1869.	4200	15
i 11. 3581893	This 20/e, 5-methyl	1049	1 1800	15
1 12. 358/893	Thiazole, 5-Methyl	10.74	1 2500	15
1 13.	1 Unknown	1 19.27	1 2100	IJ
1 14.		1		1
1 10.		1		1
1 10.		1		1
1 11.		1		j
18.		1		1
1 19.		1	1	i
20 .	,	1		1
21.		1		·i
22.		1		1
1 23.		1	1	·i
24.		1	1	-i
., 25.		i	<u> </u>	-i
1 26.		i	i	-¦
· 27.	· · · · · · · · · · · · · · · · · · ·	i		-¦
28.	-	i	1	-
29.		;	·	-¦
i. 30.	1	;	1	-
**************************************		i	·	-
	_	·	· f	_ 1

Lab Name: MEIATRAE Contract: 60	3-01-7417 59262
1.5 Code: META Case No.: \$35 \$ SAS No.:	SDG No.: 15 Q 357
	o Sample ID: <u>AA0503</u>
Sample wt/vol: 30.0 (g/mL) 6 Lal	o File ID:
Level: $(low/med) LOU$	te Received: 10-27-87
	te Extracted: 11-02-87
Extraction: (SepF/Cont/Sonc) SonC Da	te Analyzed: <u>11-17-8</u> 7
GPC Cleanup: (Y/N)	lution Factor:
CONCENTR CAS NO. COMPOUND (ug/L or	ng/kg) UG/KG Q
319-84-6alpha-BHC	10.0
319-85-7beta-BHC 319-86-8delta-BHC	10,0
58-89-9	
76-44-8Heptachlor	$\frac{10}{10}$
309-00-2Aldrin	
1024-57-3Heptachlor epoxide	
959-98-8Endosulfan I	
60-57-1Dieldrin	
72-55-94,4'-DDE	
72-20-8Endrin	
33213-65-9Endosulfan II	$\frac{1}{2}$
72-54-84,4'-DDD	$-\frac{19}{19}$
1031-07-8Endosulfan sulfate	—
50-29-34,4'-DDT	
72-43-5Methoxychlor	96
53494-70-5Endrin ketone	19 04700
5103-71-9alpha-Chlordane	9% 190 P20 11
5103-74-2gamma-Chlordane	96 94 91
8001-35-2Toxaphene	190
12674-11-2Aroclor-1016	96
11104-28-2Aroclor-1221	-i-9i
11141-16-5Aroclor-1232	-i-96 i 0 i
53469-21-9Aroclor-1242	
12672-29-6Aroclor-1248	1 96 I U
11097-69-1Aroclor-1254	<u> 190 i v</u> i
11096-82-5Aroclor-1260	1 190 111

ROUTINE ANALYTICAL SERVICES
CONTRACT REQUIRED DETECTION AND QUANTITATION LIMITS

TABLE A
CONTRACT LABORATORY PROGRAM
HAZARDOUS SUBSTANCE LIST (HSL)
VOLATILES DETECTION LIMITS

			SOIL
COMPOUND	CAS #	WATER	SEDIMENT SLUDGE
com ours			
Chloromethane	74-87-3		/L 10 ug/KG
Bromomethane	74-83-9	10	10
Vinyl Chloride	75-01-4	10	10
Chloroethane	75-00-3	10	10
Methylene Chloride	75-09-2	5	5
Acetone	67-64-1	10	10
Carbon Disulfide	75-15-0	5	5
1,1-Dichloroethene	75-35-4	5	5
1,1-Dichloroethane	75-35-3	5	5
trans-1,2-Dichloroethene	156-60-5	5 5 5 5	5 5 5 5
Chloroform	67-66-3	5	5
1-2-Dichloroethane	107-06-2	5	5
2-Butanone (MEK)	78-93-3	10	10
1,1,1-Trichloroethane	71-55-6	5	5
Carbon Tetrachloride	56-23-5	5	5
Vinyl Acetate	108-05-4	10	10
Bromodichloromethane	75-27-4	5	5
1,1,2,2-Tetrachloroethane	79-34-5	5	5
1,2-Dichloropropane	78-87-5	5 5 5	5 5 5 5 5
trans-1,3-Dichloropropene	10061-02-6	5	5
Trichloroethene	79-01-6	5	5
Dibromochloromethane	124-48-1	5 5	5
1,1,2-Trichloroethane	79-00-5	5	5
Benzene	71-43-2	5	5
cis-1,3-Dichloropropene	10061-01-5	5	5
2-Chloroethyl Vinyl Ether	110-75-8	10	10
Bromoform	75-25-2	5	5
2-Hexanone	591-78-6	10	10
4-Methyl-2-pentanone	108-10-1	10	10
Tetrachloroethene	127-18-4	5	5
Toluene	108-88-3	5	5
Chlorobenzene	108-90-7	5	5
Ethyl Benzene	100-41-4	5	5
Styrene	100-42-5	5	5
Total Xylenes		5	5
•			

TABLE A (Cont.) CONTRACT LABORATORY PROGRAM HAZARDOUS SUBSTANCE LIST (HSL) SEMI-VOLATILES DETECTION LIMITS

SOIL SEDIMENT WATER SLUDGE COMPOUND CAS # 62-75-9 10 ug/L 330 ug/KG N-Nitrosodimethylamine Phenol 108-95-2 10 330 10 330 Aniline 62-53-3 bis(2-Chloroethyl) ether 111-44-4 10 330 95-57-8 330 2-Chlorophenol 10 541-73-1 1,3-Dichlorobenzene 10 330 10 330 106-46-7 1,4-Dichlorobenzene 100-51-6 10 330 Benzyl Alcohol 95-50-1 10 330 1,2-Dichlorobenzene 10 330 2-Methylphenol 95-48-7 bis(2-Chloroisopropyl) ether 39638-32-9 10 330 4-Methylphenol 106-44-5 10 330 N-Nitroso-Di-n-propylamine 621-64-7 10 330 67-72-1 10 330 Hexachloroethane Nitrobenzene 98 - 95 - 310 330 Isophorone 78-59-1 10 330 88-75-5 10 330 2-Nitrophenol 2,4-Dimethylphenol 105-67-9 10 330 50 Benzoic Acid 65-85-0 1600 bis-(2-Chloroethoxy) methane 111-91-1 10 330 2,4-Dichlorophenol 120-83-2 10 330 1,2,4-Trichlorobenzene 120-82-1 10 330 Naphthalene 91-20-3 10 330 4-Chloroaniline 106-47-8 330 10 Hexachlorobutadiene 87-68-3 10 300 4-Chloro-3-methylphenol 59-50-7 10 330 2-Methylnaphthalene 91-57-6 10 330 Hexachlorocyclopentadiene 77-47-4 10 330 2,4,6-Trichlorophenol 88-06-2 10 330 2,4,5-Trichlorophenol 95-95-4 50 1600 2-Chloronaphthalene 91-58-7 10 330 2-Nitroaniline 88-74-4 50 1600 Dimethyl Phthalate 131-11-3 10 330 Acenaphtylene 208-96-8 10 330 3-Nitroaniline 99-09-2 50 1600 Acenaphthene 83-32-9 10 330 2,4-Dinitrophenol 51-28-5 50 1600 4-Nitrophenol 100-02-7 50 1600 Dibenzofuran 132-64-9 10 330 2,4-Dinitrotoluene 121-14-2 10 330 2,6-Dinitrotoluene 606-20-2 10 330 Diethylphthalate 84 - 66 - 210 330 4-Chlorophenyl phenylether 7005-72-3 10 330

Cont.

TABLE A (Cont.) CONTRACT LABORATORY PROGRAM HAZARDOUS SUBSTANCE LIST (HSL) SEMI-VOLATILES DETECTION LIMITS

COMPOUND			SOIL SLUDGE
	CAS #	WATER	SEDIMENT
Fluorene	86-73-7	10 ug/L	
4-Nitroaniline	100-01-6	50	1600
4,6-Dinitro-2-methylphenol	53 4- 52 -1	50	1600
N-nitrosodiphenylamine	86-30-6	10	330
4-Bromophenyl phenyl ether	101-55-3	10	330
Hexachlorobenzene	118-74-1	10	330
Pentachlorophenol	87-86-5	50	1600
Phenanthrene	85-01-8	10	330
Anthracene	120-12-7	10	330
Di-n-butyl phthalate	84-74-2	10	330
Fluoranthene	206-44-0	10	330
Benzidine	92-87 - 5	80	2600
Pyrene	129-00-0	10	330
Butylbenzyl phthalate	85-68 -7	10	330
3,3'-Dichlorobenzidine	91-94-7	10	660
Benzo(a)anthracene	56-55 - 3	10	330
bis(2-ethylhexyl)phthalate	117-81-7	10	330
Chrysene	218-01-9	10	330
Di-n-octyl phthalate	117-84-0	10	330
Benzo(b) fluoranthene	205-99-2	10	330
Benzo(k)fluoranthene	207-08-9	10	330
Benzo(a) pyrene	50-32-8	10	330
Indeno(1,2,3-cd)pyrene	193-39-5	10	330
Dibenz(a,h)anthracene	53-70-3	10	330
Benzo(g,h,i)perylene	191-24-2	10	330

TABLE A (Cont.) CONTRACT LABORATORY PROGRAM HAZARDOUS SUBSTANCE LIST (HSL) PESTICIDE AND PCB DETECTION LIMITS

			SEDIM	
COMPOUND	CAS #	WATER	SLUDO	GE
_			1	
alpha-BHC	319-84-6		ug/L 8	ug/KG
beta-BHC	31 9- 85 - 7	0.05	8	
delta-BHC	319-86-8	0.05	8	
gamma-BHC (Lindane)	58-89-9	0.05	8	
Heptachlor	76-44-8	0.05	8	
Aldrin	309-00-2	0.05	8	
Heptachlor Epoxide	1024-57-3	0.05	8	
Edosulfan I	959-98-8	0.05	8	
Dieldrin	60-57-1	0.10	16	
4,4'-DDE	72-55-9	0.10	16	
Endrin	72-20-8	0.10	16	
Edosulfan II	33213-65-9	0.10	16	
4,4'-DDD	72-54-8	0.10	16	
Endrin Aldehyde	7421-93-4	0.10	16	
Endosulfan Sulfate	1031-07-8	0.10	16	
4,4'-DDT	50-29-3	0.10	16	
Endrin Ketone	53494-70-5	0.10	16	
Methoxychlor (Mariate)	72-43-5	0.5	80	
Chlordane	57-74-9	0.5	80	(
Toxaphene	8001-35-2	1.0	160	`
AROCLOR-1016	12674-11-2	0.5	80	
AROCLOR-1221	11104-28-2	0.5	80	
AROCLOR-1232	11141-16-5	0.5	80	
AROCLOR-1242	53469-21-9	0.5	80	
AROCLOR-1248	12672-29-6	0.5	80	
AROCLOR-1254	11097-69-1	1.0	160	
AROCLOR-1260	11096-82-5	1.0	160	
			~~~	

# TABLE A (Cont.) CONTRACT LABORATORY PROGRAM HAZARDOUS SUBSTANCE LIST (HSL) INORGANIC DETECTION LIMITS

COMPOUND	PROCEDURE	DETECTION	SOIL	
		WATER	SEDIMENT SLUDGE	
ALUMINUM	ICP	200 ug/L	40 mg/KG	
ANTIMONY	FURNACE	60	2.4	
ARSENIC	FURNACE	10	2	
BARIUM	ICP	200	40	
BERYLLIUM	ICP	5	1	
CADMIUM	ICP	5	1	
CALCIUM	ICP	5000	1000	
CHROMIUM	ICP	10	2	
COBALT	ICP	50	10	
COPPER	ICP	25	5	
IRON	ICP	100	20	
LEAD	FURNACE	5	1	
MAGNESIUM	ICP	5000	1000	
MANGANESE	ICP	15	3	
MERCURY	COLD VAPOR	0.2	0.008	
NICKEL	ICP	40	8	
POTASSIUM	ICP	5000	1000	
SELENIUM	FURNACE	5	1	
SILVER	ICP	10	2	
SODIUM	ICP	5000	1000	_
THALLIUM	FURNACE	10	2	
TIN .	ICP	40	8	
VANADIUM	ICP	50	10	
ZINC	ICP	20	4	
CYANIDE	COLOR	10	2	

TABLE B
CENTRAL REGIONAL LABORATORY
VOLATILES DETECTION LIMITS

PARAMETER	CAS #	DETECTION LIMIT IN REAGENT WATER	
BENZENE	71-43-2	1.5 ug/L	
BROMODICHLOROMETHANE	75-27-4	<del>-</del>	
BROMOFORM	75-25-2		
BROMOMETHANE	74-83-9	10	
CARBON TETRACHLORIDE	56-23-5		
CHLOROBENZENE	108-90-7		
CHLOROETHANE	75-00-3	1.5	
2-CHLOROETHYL VINYL ETHER		1.5	
CHLOROFORM	67-66-3	1.5	
CHLOROMETHANE	74-87-3		
	124-48-1		
1,1-DICHLOROETHANE	75-34-3		
1,2-DICHLOROETHANE	107-06-2	1.5	
1,1-DICHLOROETHENE	107-06-2 75-35-4	1.5	
trans-1,2-DICHLOROETHENE	156-60-5	1.5	
1,2-DICHLOROPROPANE	78-87-5	1.5	
cis-1,3-DICHLOPROPROPENE	10061-01-5	2	
trans-1,3-DICHLOROPROPENE	10061-02-6	1	
ETHYL BENZENE	100-41-4	1.5	
METHYLENE CHLORIDE *	75-09-2	1	
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.5	
TETRACHLOR0ETHENE	127-18-4	1.5	
TOLUENE *	108-88-3	1.5	
1,1,1-TRICHLOROETHANE	71-55-6	1.5	
1,1,2-TRICHLOROETHANE	79-00-5	1.5	
TRICHLOROETHENE	79-01-6	1.5	
VINYL CHLORIDE	75-01-4	10	
ACROLEIN	107-02-8		
ACETONE *	67-64-1	75	
ACRYLONITRILE CARBON DISULFIDE	67-64-1 107-13-1	50	
CARBON DISULFIDE	/5-15-0	3	
2-BUTANONE	78-93 <b>-</b> 3	(50)	
VINYL ACETATE	108-05-4	15	
4-METHYL-2-PENTANONE	108-10-1		
2-HEXANONE	519-78-6	, ,	
STYRENE	100-42-5		
m-XYLENE	108-38-3		
O-XYLENE **	95-47-6		
p-XYLENE **	106-42-3	2.5′.**	

Common Laboratory Solvents.

Blank Limit is 5x Method Detection Limit.

^( ) Values in parentheses are estimates.

Actual values are being determined at this time

^{**} The o-Xylene and p-xylene are reported as a total of the two.

TABLE B (Cont.)
CRL
SEMI-VOLATILES DETECTION LIMITS

		ECTION LIMITS	
PARAMETER	CAS #		BLANK
		LIMIT	LIMIT
ANILINE	62-53-3	1.5 ug/L	3 ug/L
BIS (2-CHLOROETHYL) ETHER		1.5	3
PHENOL	108-95-2	2	4
2-CHLOPOPHENOL	95-57-8	2	4
2-CHLOROPHENOL 1,3-DICHLOROBENZENE	95-57-8 541-73-1	1.5 2 2 2	4
1,4-DICHLOROBENZENE	106-46-7	2	4
1,2-DICHLOROBENZENE	95-50-1	2.5	5
BENZYL ALCOHOL	100-51-6	2	4
BIG (2-CHIODOIGODDODVI) FTHED	39638-33-9	2 5	<u>,</u>
2-METHYLPHENOL	95-48-7 67-72-1	1	5 2
HEXACHLOROETHANE	67-72-1	2	4
N-NITROSODI PROPYLAMINE	621-64-7	1.5	3
			5
A. MEMUVI DUEMAT	106-44-5	1	2
4-MEINILPHENOL	70-50-1	2.5	5
NITROBENZENE 4-METHYLPHENOL ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL	70-39-1	2.5	4
2 A DIMERUNI DUENOI	105 670	2	4
2,4-DIMETHILPHENOL	105-67-9	2	
BIS (2-CHLOROETHOXY) METHANE	111-91-1	2.5	5
2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE	120-83-2	2	4
1,2,4-TRICHLOROBENZENE	120-82-1	2	4
NAPHTHALENE	91-20-3	2	4
4-CHLOROANILINE	106-47-8	2	4
HEXACHLOROBUTADIENE	91-20-3 106-47-8 87-68-3 65-85-0	2.5	5
BENZOIC ACID	65-85-0	(30)	(60)
2-METHYLNAPTHALENE	91-57-6	2	4
4-CHLORO-3-METHYLPHENOL			3
HEXACHLOROCYCLOPENTADIENE	77-47-4	2	4
2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPTHALENE	88-06-2	1.5	3
2,4,5-TRICHLOROPHENOL	95-95-4	1.5	3 3 3 3
2-CHLORONAPTHALENE	91-58-7	1.5	3
ACENAPTHYLENE	208-96-8	1 [	3
DIMETHYL PHTHALATE	131-11-3	1.5	3
2,6-DINITROTOLUENE	606-20-2	1	2
ACENAPHTHENE	83-32-9	1.5	2 3 5
3-NITROANILINE	99-09-2	2.5	
DIBENZOFURAN	132-64-9	1	2
DIMETHYL PHTHALATE  2,6-DINITROTOLUENE ACENAPHTHENE 3-NITROANILINE DIBENZOFURAN  2,4-DINITROPHENOL  2,4-DINITROTOLUENE	51-28-5	(15)	(30)
2,4-DINITROTOLUENE	121-14-2	1	2

Cont.

TABLE B (Cont.) CRL SEMI-VOLATILE DETECTION LIMITS

PARAMETER	CAS #	DETECTION LIMITS	BLANK
		LIMIT	LIMIT
FLUORENE	86-73-7	1 ug/L	2 ug/L
4-NITROPHENOL	86-73-7 100-02-7	1.5	3
4-CHLOROPHENYL PHENYL ETHER			2
DIETHYL PHTHALATE	84-66-2		2 2
4,6-DINITRO-2-METHYLPHENOL	534-52-1	(15)	(30)
	122-66-7		2
N-NITROSODIPHENYLAMINE *	86-30-6	_	-
DIPHENYLAMINE * .	122-39-4	1.5	3
N-NITROSODIPHENYLAMINE * DIPHENYLAMINE * 4-NITROANILINE	100-01-6	3	6
4-BROMOPHENYL PHENYL ETHER	101-55-3	1.5	3
HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE	118-74-1	1.5	3
PENTACHLOROPHENOL	87-86-5	2	4
PHENANTHRENE	85-01-8	1	2
ANTHRACENE	120-12-7	2.5	5
DI-n-RUTVI, DHTHALATE	84-74-2	2	4
FLUORANTHENE	206-44-0	1.5	4 3
PYRENE	129-00-0	1.5	3
BUTYL BENZYL PHTHALATE			7
CHRYSENE **	218-01-9		
BENZO(a) ANTHRACENE **	56-55 <b>-</b> 3		3
BIS(2-ETHYLHEXYL) PHTHALATE		1	2
	117-84-0		2 3
BENZO (b) FLUORANTHENE ***	205-99-2		
BENZO(k) FLUORANTHENE ***	207-08-9	1.5	3
BENZO(a) PYRENE	50-32-8	2	4
INDENO(1,2,3-cd) PYRENE	193-39-5	3.5	7
DIBENZO(a,h)ANTHRACENE			
BENZO(g,h,i)PERYLENE	191-24-2	4	5 8
2-NITROANILINE	88-74-4		2

^{*} These two parameters are reported as a total.

** These two parameters are reported as a total.

*** These two parameters are reported as a total.

NOTE: Limits are for reagent water.

^( ) Values in Paranentheses are estimates.of theALUES ARE BEING The actual values are being determined at this time.

TABLE B (Cont.)
CRL
PESTICIDE AND PCB DETECTION LIMITS

PARAMETER	CAS #	DETECTION LIMIT		
ALDRIN	309-00-2	0.005	ug/L	
alpha BHC	319-84-6	(0.010)		
beta BHC	319-85-7	(0.005)		
delta BHC	319-86-8	(0.005)		
gama BHC(LINDANE)	58-89-9	0.005		
CHLORDANE	57-74-9	(0.020)		
4,4'-DDD	72-54-8	(0.020)		
4,4'-DDE	72-55-9	(0.005)		
4,4'-DDT	50-29-3	0.020		
DIELDRIN	60-57-1	0.010		
ENDOSULFAN I	959-98-8	0.010		
ENDOSULFAN II	33213-65-9	0.010		
ENDOSULFAN SULFATE	1031-07-8	(0.10)		
ENDRIN	72-20-8	0.010		
ENDRIN ALDEHYDE	7421-93-4	(0.030)		
ENDRIN KETONE	53494-70-5	(0.030)		
HEPTACHLOR	76-44-8	0.030		
HEPTACHLOR EPOXIDE	1024-57-3	0.005		
4,4'-METHOXYCHLOR	72-43-5	0.020		
TOXAPHENE	8001-35-2	(0.25)		٠.
PCB-1242	53469-21-9	(0.10)		(
PCB-1248	12672-29-6	(0.10)		`
PCB-1254	11097-69-1	(0.10)		
PCB-1260	11096-82-5	(0.10)		

^( ) Values in parentheses are estimates.

Actual values are being determined at this time.

NOTE: Limits are for reagent water.

# TABLE B (Cont.) CRL INORGANIC DETECTION LIMITS

### JANUARY 1986

DETECTION COMPOUND **PROCEDURE** LIMITS RANGE UNITS ICP 80 80 TO 1,000,000 uq/L ALUMINUM 2 2 TO 30 ug/L **FURNACE** ANTIMONY 2 2 TO 30 uq/L ARSENIC **FURNACE** ICP 6 6 TO 20,000 uq/L BARIUM ICP 1 1 TO 20,000 ug/L BERYLLIUM ICP 80 80 TO 20,000 ug/L BORON CADMIUM ICP 10 10 TO 20,000 ug/L 0.2 0.2 TO 2 ug/L **FURNACE** CADMIUM 0.5 TO 1,000 0.5 mg/L CALCIUM ICP 8 TO 20,000 ug/L ICP 8 CHROMIUM COBALT ICP 6 6 TO 20,000 ug/L 6 TO 20,000 ICP 6 ug/L COPPER ICP 80 80 TO 1,000,000 ug/L IRON 2 **FURNACE** 2 TO 30 ug/L LEAD ICP 70 70 TO 20,000 LEAD ug/L ICP 10 10 TO 20,000 LITHIUM ug/L MAGNESIUM ICP 0.1 0.1 TO 200 mg/L 5 5 TO 20,000 ug/L MANGANESE ICP 0.1 TO 2 **MERCURY** COLD VAPOR 0.1 ug/L 15 15 TO 20,000 MOLYBDENUM ICP ug/L 15 NICKEL ICP 15 TO 20,000 ug/L ICP 2 2 TO 1,000 POTASSIUM mg/L SELENIUM **FURNACE** 2 2 TO 30 ug/L SILVER ICP 6 6 TO 10,000 ug/L SODIUM ICP 1 1 TO 1000 mg/L STRONTIUM ICP 10 10 TO 20,000 uq/L SULFIDE TITRATION 1 < 1 mg/L SULFIDE COLOR 0.05 < 1 mg/L THALLIUM **FURNACE** 2 2 TO 30 ug/L TITANIUM ICP 25 25 TO 20,000 ug/L ICP TIN 40 40 TO 20,000 ug/L VANADIUM ICP 5 5 TO 20,000 ug/L 5 5 TO 20,000 YTTRIUM ICP ug/L ZINC ICP 40 40 TO 1,000,000 ug/L CYANIDE AA 8 8 TO 200 ug/L

NOTE: THE ABOVE LIST MAY OR MAY NOT CONTAIN COMPOUNDS THAT ARE ROUTINELY ANALYZED AT CRL FOR LOW LEVEL DETECTION LIMITS FOR DRINKING WATER.

TABLE C SPECIAL ANALYTICAL SERVICES DRINKING WATER VOLATILE DETECTION LIMITS

PARAMETER	CAS #	DETECTION LIMIT IN REAGENT WATER	
BENZENE	71-43-2	1.5 ug/L	
BROMODICHLOROMETHANE	75-27-4	<u>-</u>	
BROMOFORM			
BROMOMETHANE	75-25-2 74-83-9	10	
CARBON TETRACHLORIDE	56-23-5		
CHLOROBENZENE	108-90-7	1.5	
CHLOROETHANE	75-00-3	1.5	
2-CHLOROETHYL VINYL ETHER	110-75-8	1.5	
CHLOROFORM	67-66-3	1.5	
CHLOROMETHANE	74-87-3	10	
DIBROMOCHLOROMETHANE	124-48-1		
1,1-DICHLOROETHANE	75-34-3	1.5	
1,2-DICHLOROETHANE	75-34-3 107-06 <b>-</b> 2	1.5	
1,1-DICHLOROETHENE	75-35-4		
trans-1,2-DICHLOROETHENE	156-60-5	1.5	
1,2-DICHLOROPROPANE	78-87-5	1.5	
cis-1,3-DICHLOPROPROPENE	10061-01-5	2	
trans-1,3-DICHLOROPROPENE	10061-02-6	1	
ETHYL BENZENE	100-41-4		
METHYLENE CHLORIDE *	75-09-2	1	
1,1,2,2-TETRACHLOROETHANE		1.5	
TETRACHLOROETHENE \	127-18-4	1.5	
TOLUENE *	108-88-3		
1,1,1-TRICHLOROETHANE	71-55-6	1.5	
1,1,2-TRICHLOROETHANE	79-00-5	1.5	
TRICHLOROETHENE	79-01-6	1.5	
VINYL CHLORIDE	75-01-4	10	
ACROLEIN	107-02-8		
ACETONE *	67-64-1		
ACRYLONITRILE	107-13-1		
CARBON DISULFIDE	75-15-0	_	
2-BUTANONE	78-93-3		
VINYL ACETATE	108-05-4		
4-METHYL-2-PENTANONE	108-10-1	• •	
2-HEXANONE	519-78-6		
STYRENE	100-42-5	1	
m-XYLENE	108-38-3	2	
O VIDENE	95-47-6		
p-XYLENE **	106-42-3	2.5 **	

Common Laboratory Solvents.
Blank Limit is 5x Method Detection Limit.

⁾ Values in parentheses are estimates.

Actual values are being determined at this time

The o-Xylene and p-xylene are reported as a total of the two.

# TABLE C (Cont.) SAS DRINKING WATER SEMI-VOLATILES DETECTION LIMITS

ANILINE BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROBENZENE BIS(2-CHLOROBENZENE BIS(2-CHLOROBENZENE BIS(2-CHLOROBENZENE BENZYL ALCOROL BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-C			ECTION LIMITS	
ANILINE BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROPHENOL C-CHLOROPHENOL C-CHLOROBENZENE C-CHLOROBENZENE BIS(2-CHLOROBENZENE BIS(2-CHLOROBENZENE BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROISOPROPYL) BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHANE BIS(2-CHLOROETHOXY) BIS(2-CHLOROETHOXY) BIS(2-CHLOROETHOXY) BIS(2-CHLOROETHOXY) BIS(2-CHLOROETHOXY) BIS(2-CHLOROETHOXY) BIS(2-CHLOROETHOXY) BIS(2-CHLOROETHOXY) BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROBENZENE BIS(2-CHLOROPHENOL BIS(2-CHLOROBENZENE BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CHLOROPH	PARAMETER	CAS #	DETECTION	BLANK
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3				
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	ANILINE	62-53-3	1.5 ug/L	3 ug/L
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	BIS (2-CHLOROETHYL) ETHER	111-44-4	1.5	3
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	PHENOI.	108-95-2	2	4
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	2-CHLOROPHENOL	95-57-8	2	4
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	1.3-DICHLOROBENZENE	541-73-1	2	4
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	1.4-DICHLOROBENZENE	106-46-7	2	4
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	1.2-DICHLOROBENZENE	95-50-1	2.5	5
2-METHYLPHENOL 95-48-7 1 2  HEXACHLOROETHANE 67-72-1 2 4  N-NITROSODIPROPYLAMINE 621-64-7 1.5 3  NITROBENZENE 98-95-3 2.5 5  4-METHYLPHENOL 106-44-5 1 2  ISOPHORONE 78-59-1 2.5 5  2-NITROPHENOL 88-75-5 2 4  2,4-DIMETHYLPHENOL 105-67-9 2 4  BIS (2-CHLOROETHOXY) METHANE 111-91-1 2.5 5  2,4-DICHLOROPHENOL 120-83-2 2 4  1,2,4-TRICHLOROBENZENE 120-82-1 2 4  NAPHTHALENE 91-20-3 2 4  4-CHLOROANILINE 106-47-8 2 4  HEXACHLOROBUTADIENE 87-68-3 2.5 5  BENZOIC ACID 65-85-0 (30) (60)  2-METHYLNAPTHALENE 91-57-6 2 4  4-CHLORO-3-METHYLPHENOL 59-50-7 1.5 3  HEXACHLOROCYCLOPENTADIENE 77-47-4 2 4  2,4,6-TRICHLOROPHENOL 95-95-4 1.5 3  2-CHLORONAPTHALENE 91-58-7 1.5 3	BENZYL ALCOHOL	100-51-6	2	4
HEXACHLOROETHANE N-NITROSODIPROPYLAMINE N-NITROSODIPROPYLAMINE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-N	BIS (2-CHLOROISOPROPYL) ETHER	39638-32-9	2.5	5
HEXACHLOROETHANE N-NITROSODIPROPYLAMINE N-NITROSODIPROPYLAMINE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROBENZENE N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROPHENOL N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-NITROSON N-N	2-METHYLPHENOL	95-48-7	1	2
N-NITROSODIPROPYLAMINE NITROBENZENE NITROBENZENE NITROBENZENE NITROBENZENE NITROBENZENE NITROBENZENE NITROBENZENE NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROSON NITROSON NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROSON NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHENOL NITROPHEN	HEXACHLOROETHANE	67-72-1	2	4
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	N-NITROSODI PROPYLAMINE	621-64-7	1.5	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	NITROBENZENE	98-95-3	2.5	5
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	4-METHYLPHENOL	106-44-5	1	2
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	ISOPHORONE	78-59-1	2.5	5
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	2-NITROPHENOL	88-75-5	2	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	2.4-DIMETHYLPHENOL	105-67-9	2	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	BIS (2-CHIOROETHOXY) METHANE	111-91-1	2.5	5
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	2.4-DICHLOROPHENOI.	120-83-2	2	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	1.2.4-TRICHLOROBENZENE	120-82-1	2	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	NAPHTHALENE	91-20-3	2	_
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	A-CHLOROANILINE	106-47-8	2	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	HEYACHLOROBUTADIENE	87-68-3	2 5	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	RENZOIC ACID	65-85-0	(30)	=
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	2-METHVI.NAPTHAI.FNF	91-57-6	(30)	
HEXACHLOROCYCLOPENTADIENE       77-47-4       2       4         2,4,6-TRICHLOROPHENOL       88-06-2       1.5       3         2,4,5-TRICHLOROPHENOL       95-95-4       1.5       3         2-CHLORONAPTHALENE       91-58-7       1.5       3         ACENARTHALENE       208-06-8       1.5       3	4-CHLORO-3-METHYLPHENOL	59-50-7	1 5	
2,4,6-TRICHLOROPHENOL 88-06-2 1.5 3 2,4,5-TRICHLOROPHENOL 95-95-4 1.5 3 2-CHLORONAPTHALENE 91-58-7 1.5 3 ACENAPTHYLENE 208-96-8 1.5 3 DIMETHYL PHTHALATE 131-11-3 1.5 3 2,6-DINITROTOLUENE 606-20-2 1 2 ACENAPHTHENE 83-32-9 1.5 3 3-NITROANILINE 99-09-2 2.5 5 DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30)	HEXACHLOROCYCLOPENTADIENE	77-47-4	2	
2,4,5-TRICHLOROPHENOL 95-95-4 1.5 3 2-CHLORONAPTHALENE 91-58-7 1.5 3 ACENAPTHYLENE 208-96-8 1.5 3 DIMETHYL PHTHALATE 131-11-3 1.5 3 2,6-DINITROTOLUENE 606-20-2 1 2 ACENAPHTHENE 83-32-9 1.5 3 3-NITROANILINE 99-09-2 2.5 5 DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30)	2.4.6-TRICHLOROPHENOL	88-06-2	1.5	
2-CHLORONAPTHALENE 91-58-7 1.5 3 ACENAPTHYLENE 208-96-8 1.5 3 DIMETHYL PHTHALATE 131-11-3 1.5 3 2,6-DINITROTOLUENE 606-20-2 1 2 ACENAPHTHENE 83-32-9 1.5 3 3-NITROANILINE 99-09-2 2.5 5 DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30)	2.4.5-TRICHLOROPHENOL	95-95-4	1.5	3
ACENAPTHYLENE 208-96-8 1.5 3 DIMETHYL PHTHALATE 131-11-3 1.5 3 2,6-DINITROTOLUENE 606-20-2 1 2 ACENAPHTHENE 83-32-9 1.5 3 3-NITROANILINE 99-09-2 2.5 5 DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30)	2-CHIORONA PTHAT FRE	91-58-7	1.5	3
DIMETHYL PHTHALATE  2,6-DINITROTOLUENE  ACENAPHTHENE  3-NITROANILINE  DIBENZOFURAN  2,4-DINITROPHENOL  200-30-0  1.5  3  131-11-3  1.5  3  406-20-2  1  2  2  3  1.5  3  1.5  3  1.5  3  2  2  1.5  3  2  2  3  3  1.5  3  2  3  4  5  6  6  7  7  7  7  7  7  7  7  7  7  7	ACENA DTHVI.FNF	208-96-8	1.5	3
2,6-DINITROTOLUENE 606-20-2 1 2 ACENAPHTHENE 83-32-9 1.5 3 3-NITROANILINE 99-09-2 2.5 5 DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30)	DIMETHVI DHTHALATE	131-11-3	1.5	3
ACENAPHTHENE 83-32-9 1.5 3 3-NITROANILINE 99-09-2 2.5 5 DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30)	2.6-DINITROTOLUENE	606-20-2	1	2
3-NITROANILINE 99-09-2 2.5 5 DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30)	ACENAPHTHENE	83-32-9	1.5	3
DIBENZOFURAN 132-64-9 1 2 2,4-DINITROPHENOL 51-28-5 (15) (30) 2,4-DINITROTOLUENE 121-14-2 1	3-NITROANILINE	99-09-2	2.5	5
2,4-DINITROPHENOL 51-28-5 (15) (30)	DIBENZOFURAN	132-64-9	1	2
2.4-DINITROTOLIENE 121-14-2 1 2	2.4-DINITROPHENOL	51-28-5	(15)	
6.13 DAMAANDAWAMD	2.4-DINITROTOLUENE	121-14-2	1	2

Cont.

# TABLE C (Cont.) SAS DRINKING WATER SEMI-VOLATILE DETECTION LIMITS

PARAMETER	CAS #	DETECTION	BLANK
PARAMETER	CAS #	LIMIT	LIMIT
FLUORENE	86-73-7 100-02-7	1 ug/L	2 ug/L
			3
4-CHLOROPHENYL PHENYL ETHER			2
DIETHYL PHTHALATE	84-66-2		2
4,6-DINITRO-2-METHYLPHENOL	534-52-1	(15)	(30)
1,2-DIPHENYLHYDRAZINE	122-66-7	1	2
N-NITROSODIPHENYLAMINE *	86-30-6		
DIPHENYLAMINE *	122-39-4	1.5	3
N-NITROSODIPHENYLAMINE * DIPHENYLAMINE * 4-NITROANILINE	100-01-6	3	6
4-BROMOPHENYL PHENYL ETHER	101-55-3	1.5	3
HEXACHLOROBENZENE	118-74-1	1.5	3
PENTACHLOROPHENOL	87-86-5	2	4
PHENANTHRENE	85-01-8	1	6 3 3 4 2 5
HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE	120-12-7	2.5	5
DI-N-BUTYL PHTHALATE	84-14-2	2	4
FLUORANTHENE	206-44-0	1.5	4 3 3
PYRENE	129-00-0	1.5	3
PYRENE BUTYL BENZYL PHTHALATE	85-68-7	3.5	7
CHRYSENE **	218-01-9		
BENZO(a) ANTHRACENE **	56-55-3	1.5	3
BIS (2-ETHYLHEXYL) PHTHALATE			2
			3
BENZO (b) FLUORANTHENE ***	205-99-2		•
DI-n-OCTYL PHTHALATE BENZO(b)FLUORANTHENE *** BENZO(k)FLUORANTHENE ***	207-08-9	1.5	3
BENZO (a) PYRENE	50-32-8	2	
INDENO(1, 2, 3-cd) PYRENE	193-39-5	3.5	4 7
INDENO(1,2,3-cd)PYRENE DIBENZO(a,h)ANTHRACENE	53-70-3	2.5	5
BENZO (g,h,i) PERYLENE	191-24-2	4	8
	88-74-4		2
- DITTOMILLING	00 /4-4	ī	4

^{*} These two parameters are reported as a total.

NOTE: Limits are for reagent water.

^{**} These two parameters are reported as a total.

^{***} These two parameters are reported as a total.

^( ) Values in Paranentheses are estimates.of the ALUES ARE BEING The actual values are being determined at this time.

# TABLE C (Cont.) SAS DRINKING WATER PESTICIDE AND PCB DETECTION LIMITS

PARAMETER	CAS #	DETECTION LIMIT	<b>N</b>	
ALDRIN	309-00-2	0.005	ug/L	
alpha BHC	319-84-6	(0.010)	3.	
beta BHC	319-85-7	(0.005)		
delta BHC	319-86-8	(0.005)		
gama BHC(LINDANE)	58-89-9	0.005		
CHLORDANE	57-74-9	(0.020)		
4,4'-DDD	72-54-8	(0.020)		
4,4'-DDE	72-55-9	(0.005)		
4,4'-DDT	50-29-3	0.020		
DIELDRIN	60-57-1	0.010		
ENDOSULFAN I	959-98-8	0.010		
ENDOSULFAN II	33213-65-9	0.010		
ENDOSULFAN SULFATE	1031-07-8	(0.10)		
ENDRIN	72-20-8	0.010		
ENDRIN ALDEHYDE	7421-93-4	(0.030)		
ENDRIN KETONE	53494-70-5	(0.030)		
HEPTACHLOR	76-44-8	0.030		
HEPTACHLOR EPOXIDE	1024-57-3	0.005		
4,4'-METHOXYCHLOR	72-43-5	0.020		
TOXAPHENE	8001-35-2	(0.25)		
PCB-1242	53469-21-9	(0.10)		(
PCB-1248	12672-29-6	(0.10)		•
PCB-1254	11097-69-1	(0.10)		
PCB-1260	11096-82-5	(0.10)		
•				

^( ) Values in parentheses are estimates.Actual values are being determined at this time.

NOTE: Limits are for reagent water.

# TABLE C (Cont.) SAS DRINKING WATER INORGANIC DETECTION LIMITS

### JANUARY 1986

	DI	ETECTION					
PARAMETER		LIMITS		RAN	NGE	UNITS	
ALUMINUM	ICP	80	.80		1,000,000	ug/L	
ANTIMONY	FURNACE	2	2		30	ug/L	
ARSENIC	FURNACE	2	2	TO	30	ug/L	
BARIUM	ICP	6	6		20,000	$\mathtt{ug}/\mathtt{L}$	
BERYLLIUM	ICP	1	1	TO	20,000	ug/L	
CADMIUM	ICP	10	10		20,000	ug/L	
CADMIUM	FURNACE	0.2	0.2	TO	2	ug/L	
CALCIUM	ICP	0.5	0.5	TO	1,000		mg/L
CHROMIUM	ICP	8	8	$\mathbf{TO}$	20,000	ug/L	
COBALT	ICP	6	6	TO	20,000	ug/L	
COPPER	ICP	6	6	TO	20,000	ug/L	
IRON .	ICP	80	80	TO	1,000,000	ug/L	
LEAD	FURNACE	2	2	TO	30	ug/L	
LEAD	ICP	70	70	TO	20,000	ug/L	
LITHIUM	ICP	10	10	TO	20,000	ug/L	
MAGNESIUM	ICP	0.1	0.1	TO	200	_	mg/L
MANGANESE	ICP	5	5	TO	20,000	ug/L	
MERCURY	COLD VAPO	OR 0.1	0.1	TO	2	ug/L	
MOLYBDENUM	ICP	150	15	TO	20,000	ug/L	
NICKEL	ICP	15	15	TO	20,000	ug/L	
POTASSIUM	ICP	2	2	TO	1,000		mq/L
SELENIUM	FURNACE	2	2	TO	30	ug/L	•
SILVER	ICP	6	6	TO	10,000	ug/L	
SODIUM	ICP	1	1	TO	30	J	mg/L
STRONTIUM	ICP	10	10	TO	20,000	ug/L	٠.
THALLIUM	FURNACE	2	2	TO	30	ug/L	
TITANIUM	ICP	25	25	TO	20,000	ug/L	
TIN	ICP	40	40	TO	20,000	ug/L	
VANADIUM	ICP	5	5	TO	20,000	ug/L	
YTTRIUM	ICP	5	5	TO	20,000	ug/L	
ZINC	ICP	40	40	TO	1,000,000	ug/L	
CYANIDE	AA	8	8	то	200	ug,	/L

NOTE: THE ABOVE LIST MAY OR MAY NOT CONTAIN COMPOUNDS THAT ARE ROUTINELY ANALYZED AT CRL FOR LOW LEVEL DETECTION LIMITS FOR DRINKING WATER.

## APPENDIX F

WELL LOGS OF THE AREA OF THE SITE

IS T TRU

יורב

III. Depf. of Put., ic Health Yellow Copy – Well Contractor Blue Copy – Well Owner

REQUESTLY AND MAIL ORIGINAL TO STATE DE-1 616, STATE OFFICE BUILDING, SPRINGFIELD, OGICAL/WATER SURVEYS SECTION. BE SURE TO FILL IN ALL PERTINENT INFORMATION REQUES' PARTMENT OF PUBLIC HEALTH, ROOM 616, SILLINOIS, 62706. DO NOT DETACH GEOLOGICAL / PROVIDE PROPER WELL LOCATION.

# ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

	/2/ft.	ft.	أ	14	Γ
	Hole Diam. In. Depth // ft. Buried Slab: Yes No	Drive Pipe Diam. in. Depth ft	In Rock X	i	100
7	Hole Diam. C	Pipe Diam.	Finished in Drift	Gravel Packed	(UNIX)
	Bored	Drive F	Finish	. Gravel	(MIND)
1. Type of Well	a. L'ug Bo C'urb material	b. Lriven.	c. L'rilled	Tubular	ייי כייסוני
<del>-</del> i					

	Lime Stewar		
· .	Dement.	0	40,
Distunce to Nearest:	rest:	-	
Buililing 4	7. 7.	Seepage Tile Field_	14 /20 H
Cess Pool	ł	Sewer (non Cast iron)	iron) 20
Priv.	268min	Sewer (Cast iron)	70
Septic Tank	25.	Barnyard	22000
Leaching Pit	acome!	Manure Pile	- Mines

ö

Bunning K. L. Seepage Tile Field	Sewer (non Cast iron) 70	Sewer (Cast iron) 720	Barnyard - 2222 cc	Leaching Pit Manure Pile	used for human consumption?
bunning 4.7. Ft.	Cess Pool	Privi	Septic Tonk	Leaching Pit	3. Is writer from this well to be used for human consumption?

nent Pump Installed? Yes X No acturer A & Ope Ke T Type 50 W1-9 BC.  ity 20 gpm. Depth of setting X & ft.	Manufacturer A e d De Ke T Type 50 W - 9 AC Capacity 220 gpm. Depth of setting 8 4 ft.
nent Pump Installed? Yes acturer Act apm. Depth of	Date well completed  Permanent Pump Installed? Yes  Manufacturer Ar d Dacker  Capacity 272 gpm. Depth of
ment Pump Installed?  acturer & d A  ity 222 gpm.	. Date well completed . Permanent Pump Installed? Manufacturer Ac d Ac Capacity 22 gpm.
	. Perma Manufa Capac

X Darks Router	No
? Yes_	X
stalled'	Yes
Pitless Adaptor In	Well Disinfected?
7.	ထဲ

Well Top Sealed?

ဖ

	IEMARKI: 42 opt 63 × 202 presourtant luca
×	ৰ্
1	₹,
	3
1	ğ
Yes	حة
	ત્ર
žď?	ત્ર
itte	×
rion.	3
9. Water Sample Submitted?	ag.
E D	ğ
Š	**
ge	XX.
×	₹
တံ	M

the in

# GEOLOGICAL AND WATER SURVEYS WELL RECORD

To JK, Well No.	Jicense No. 122-+1	_ Date	County (C///	Sec. 36.7c	Twp. 33.4	Rge. 46	
10. Property owner Jos e. Ph 134 CRMO JR, Well No.	Address TOWNING G. NORRIS License No. 122-+1	Permit No 26 5 32	12. Water from Learner Start of 13. County (U.//	at depth 45 to 100 ft.	Screen: Diam. in.	Length: tt. Slot	15. Coging and Liner Dine
10.		Ξ,	12.		14.		5

WOH	SECTION PLAT	) } !		imping at Le
To (Ft.)		OH		when pu
From (Ft.) To (Ft.)		/	isi .	ag top waic
Kind and Weight	Sch - 40	Galu.	16. Size Hole below casing:	above ground level. Pumping level ## ft. when pumping at 6-
Diam. (in.)	* 7		16. Size Ho	above g

hours.

gpm for

18. FORMATIONS PASSED THROUGH	THICKNESS	DEPTH OF BOTTOM.
garth, markete.	0	4
6. 21070.5toxle.	4	15.5
5/46-	555	9//
, st		

Wern's DATE, (CONTINUE ON SEPARATE SHEET IF NECESSARY) SIGNED Z

> IDPH 4.065 10/68

White Copy —
III, Dept. of 3u. c. Health
Yellow Copy — Well Contractor
Blue Copy — Wall Owner

FILL IN ALL PERTINENT INFORMATION REQUESY. , AND MAIL ORIGINAL TO STATE DE-PARTMENT OF PUBLIC HEALTH, ROOM 616, STATE OFFICE BUILDING, SPRINGFIELD, ILLINOIS, 62706. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLE

IS T

TRU

# ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

Hole Diam. 5 in. Depth 105 ft.  Buried Slab: YesNo	TO (Ft.)		
Hole Diam. 5 in.  Buried Slab: Yes  Drive Pipe Diam. in. I Finished in Drift  Gravel Packed	FROM (Ft.)		
red	(KIND)	·	
ell geri	d. (Front:		

	Seepage Tile Field	Sewer (non Cast iron)	Sewer (Cast iron)	Barnyard Money	Manure Pile
<ol><li>Listance to Negrest:</li></ol>	Building 26. Ft.	Cess Pool	Privy Antonia	Septic Tank 7.5	Leaching Pit

consumption?		2.73
human	•	)
ed for		2/
be us		-37
is well to be used for h		
면	ا ا	completed
water from	ewletting	well con
s water	es	ates we
3. I.	<b>&gt;</b>	4.

. Pitless Adoptor Installed? Yes X No recorded. Wel. Disinfected? Yes X No

9. Water Sample Submitted? Yes

REMARICS: 42 apx W x 202 pressure tank Lecotul in

# GEOLOGICAL AND WATER SURVEYS WELL RECORD

SHOW IN SECTION PLAT	
To (Ft.)	_
Elev From (Ft.)	
g and Liner Pipe  Kind and Weight  Jah - 40	_
15. Casing Diem. (in.)	
	Elev.    Kind and Weight   From (Ft.) To (Ft.)

16. Size Hole below casing:	17. Static level 30 ft. below casing top which is 18	above ground level. Pumping level C. ft. when pumping at LC.	for / house
5. Size Hol	7. Static le	above gi	- CO - CO
16	H		•

J.			
18. FORMATIONS PASSED THROUGH	H THICKNESS	S DEPTH OF BOTTOM	
ESELL MONTO	6	1.2%	
	- 7/-	- 70	
1100 Stano.	73	100,	
56.46	100	1050	

SIGNED With A MARKET IF NECESSARY)

IDPH 4.065 10/68

III. Dept. of Public Health lilow Copy — Well Contractor Liue Copy — Well Owner

FILL IN ALL PERTINENT INFORMATION RESULSTED AND MAIL URIGINAL TO STATE DEPARTMENT OF PUBLIC HEAT 1, CONSUMER HEALTH PROTECTION, 535 WEST JEFFERSON, SPRINGFIELD, ILLINUIS, 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION. GEOLOGICAL AND WATER SURVEYS WELL RECORD

# IC HEALTH

PUBLI	REP(
OF.	CTION
IRTMENT	CONSTRUC
DEPART	WELL CO
INOIS	WE

•		12		14		<b>₹</b>	10
	Depth 125 ft.	Depthft.	In Rock	10 (80)	42		
	Hole Diam. 5 in. Depth 125 ft.	o: Yes.	i i	FROM (Pt.)	0		
	pa	1:	. Gravel Packed	(KIND)	cuttings		
1. Type of Well		b. Driven	c. Drilled Tubular	d. Grout:			
-							

LOCATION IN

From (Pt.) To (Ft.)

Elev. __

SK OF

42

Ö

Black Steel 14.98

Kind and Weight

len. (In.)

S

Casing and Liner Pipe

102-000445

Driller Will-DuPage Drillingcense No. 102-6

13. County W111

Limestone

Water from___ at depth ...

35.6 Sec. 33N

Twp. Rge.

Ë.

Screen: Diam.

100

ft. Slot

Lergth:

Well No.

Property owner Paul Johnson

Address P.O. Box 364

Wilmington,

Seepage Tile Field 75	Sewer (non Cast Iron) Sewer (Cast Iron)	Leaching Pit Manure Pile Well furnishes water for human consumption? Yes X No	15-79	Monifordurer Goll of The Sithm 1 121 1 100
Building 25 Ft.	Privy Septic Tonk	Leaching Pit Well furnishes water for hum	Date well completed 10-15-79	Manufacturer GODJ d

Static level 100 ft. below casing top which is 1 ft. above ground level. Pumping level 100 ft. when pumping at 10

Size Hole below casing:

BOTTON

THICKNESS

FORMATIONS PASSED THROUGH

∞.

gpm for 4 hours.

42

42

Gravel

clay &

125

83

Limestone

|--|

Owner instructed to take sample.

11. Water Sample Submitted?

REMARKS:

10-16-79 (CONTINUE ON SEPARATE SHEET IF NECESSARY) SIGNED

### WILMINGTON

The city of Wilmington (4335) installed a public water supply in 1892. Two wells (Nos. 2 and 3) are in use and another well (No. 1) is available for emergency use. In 1949 there were 900 services, 66 percent metered; the average pumpage was 270,000 gpd. In 1980 there were 1740 services, all metered; the average pumpage was 536,224 gpd. The water is chlorinated and treated with polyphosphate to keep iron in solution.

Initially, water was pumped directly from the Kankakee River for sprinkling and fire protection use. Private wells furnished all residential and business demands until 1918 when the first well was drilled for the city. The waterworks plant at the river was then abandoned.

WELL NO. 1, open to the Galena-Platteville dolomite and the Glenwood-St. Peter Sandstone, was completed in 1917 to a depth of 710 ft by J. W. Hensley & Co., Indianapolis, Ind. This well is available for emergency use. The well is located about 104 ft south of Jackson St. and 90 ft west of Main St. in a pumphouse in the rear of the city hall, approximately 1025 ft N and 1300 ft E of the SW corner of Section 25, T33N, R9E. The land surface elevation at the well is approximately 545 ft.

A sample study log of Well No. 1 furnished by the State Geological Survey follows:

Strata	Tbickness (ft)	Deptb (ft)
QUATERNARY SYSTEM		
Pleistocene Series		
Glacial drift	15	15
ORDOVICIAN SYSTEM	*	
Maquoketa Group	and the second	
Ft. Atkinson Limestone	801	95
Scales Shale		
Shale with some limestone	45	140
Galena and Platteville Groups		
Limestone and dolomite	365	505
Ancell Group		
Glenwood Formation		
Dolomític sandstone	20	525
St. Peter Sandstone		
Sandstone, water bearing	165	690
Prairie du Chien Group		
Shakopee Dolomite	20	710

The well is cased with 12-in. pipe from 2 ft above the pump station floor to a depth of 21 ft (cemented in) and 10-in. pipe from 21 ft to a depth of 210 ft. Below the casing, the hole was finished 10 in, in diameter to the bottom.

Upon completion, the nonpumping water level was reported to be 17 ft below land surface.

A production test was conducted on March 5-6, 1943, by representatives of the Stannard Power & Equipment Co., the city, the State Water Survey, and the Federal Works Agency. After 24.1 hr of pumping at rates ranging from 264 to 315 gpm, the maximum drawdown was 124 ft from a nonpumping water level of 118 ft below the pump base. The water level recovered to 122 ft after pumping had been stopped for 2.1 hr. During the test, Well No. 2 was operating intermittently.

In July 1952, Jack Hinton, Lockport, shot the well between the depths of 600 and 704 ft with 171 lb of nitrogel
and 20 lb of 60 percent dynamite for primer and cleaned
out the well to its original depth. On September 21, 1952,
the well reportedly produced from 308 to 302 gpm for 1.4
hr with a drawdown of 80 ft from a nonpumping water level
of 144 ft. During this test, Well No. 2 was pumping continuously.

The pumping equipment presently installed consists of a 40-hp General Electric motor, an 8-in., 21-stage Pomona turbine pump set at 300 ft, rated at 250 gpm, and has 300 ft of 6-in. column pipe. A 30-ft section of 6-in. suction pipe is attached to the pump intake. The well is equipped with 300 ft of airline.

A partial analysis of a sample (Lab. No. 97798) collected October 18, 1943, showed the water to have a hardness of 407 mg/l, total dissolved minerals of 1100 mg/l, and an iron content of 0.0 mg/l.

WELL NO. 2, open to the Cambrian-Ordovician aquifer, was completed in 1936 to a depth of 1566 ft (measured in October 1954 at 1536 ft deep) by C. W. Varner, Dubuque, Iowa. The well is located about 175 ft north and 75 ft east of Well No. 1, approximately 1200 ft N and 1375 ft E of the SW corner of Section 25, T33N, R9E. The land surface elevation at the well is approximately 546 ft.

A sample study log of Well No. 2 furnished by the State Geological Survey follows:

Strata	Tbickness (ft)	Depth (ft)
QUATERNARY SYSTEM		
Pleistocene Series		
"Soil, clay and soft lime shells"	9	9
"Sand and gravel"	11	20
ORDOVICIAN SYSTEM		
Maquoketa Group		
Ft. Atkinson Limestone	70	90
Scales Shale		
Shale, some limestone	57	147
Galena and Platteville Groups		
Limestone and dolomite	365	512
Ancell Group		
Glenwood Formation		
Sandstone, partly dolomitic	13	525
St. Peter Sandstone		
Sandstone, incoherent	150	675
Sandstone, shale, chert	7	682

	Thickness	Depth
Strata (continued)	(ft)	(ft)
Prairie du Chien Group		
Shakopee Dolomite		
Dolomite, thin shale bed at top	73	755
New Richmond Sandstone		
Sandstone and dolomite	13	768
Oneota Dolomite		
Dolomite, thin beds of sandstone	277	1045
CAMBRIAN SYSTEM		
Eminence-Potosi Dolomite	218	1263
Franconia Formation		
Sandstone, dolomite, thin beds of		
shale	137	1400
Ironton-Galesville Sandstone		
Sandstone and dolomite	100	1500
Sandstone, incoherent	35	1535
Sandstone, partly dolomitic	31	1566

A 12.5-in, diameter hole was drilled to a depth of 218 ft and finished 10 in, in diameter from 218 to 1566 ft. The well is cased with 12.5-in, drive pipe from 0.5 ft above the pump station floor to a depth of 23.2 ft and 10-in, pipe from 0.5 ft above the pump station floor to a depth of 218 ft.

Upon completion, the well reportedly produced 485 gpm with a drawdown of 6.5 ft from a nonpumping water level of 59.0 ft below the top of the casing.

In 1940, the nonpumping water level was reported to be 67 ft below the pump base.

A production test was conducted in November 1942, by representatives of the J. P. Miller Artesian Well Co., Brookfield, the city, the Federal Works Agency, and E. T. Mulford, Consulting Engineer. After 24 hr of pumping at rates ranging from 725 to 815 gpm, the drawdown was 16.5 ft from a nonpumping water level of 124.0 ft below the pump base. During this test, Well No. 1 was pumping intermittently.

In November 1954, the well reportedly produced 640 gpm with a drawdown of 23 ft from a nonpumping water level of 154 ft.

Nonpumping water levels were reported to be 124 ft in October 1955 and 319 ft on October 6, 1975.

The pumping equipment presently installed is a Johnston turbine pump set at 300 ft, rated at 750 gpm, and powered by a 125-hp 1800 rpm U. S. electric motor.

A mineral analysis made by the Illinois Environmental Protection Agency (Lab. No. C001978) of a sample collected November 14, 1977, after pumping for 30 min at 760 gpm, showed the water to have a hardness of 424 mg/l, total dissolved minerals of 1168 mg/l, and an iron content of 0.1 mg/l.

WELL NO. 3, open to the Cambrian-Ordovician aquifer, was completed in November 1964 to a depth of 1578 ft by the Wehling Well Works, Beecher. The well is located in the city park on South Island east of South Park St., approximately 240 ft S and 1125 ft E of the NW corner of Section 36, T33N, R9E. The land surface elevation at the well is approximately 530 ft.

### A drillers log of Well No. 3 follows:

Strata	Thickness (ft)	Depth (ft)
Drift	15	15
Lime	35	50
Shale and time	114	164
Lime	336	500
Sand	163	663
Lime and shale	43	706
Lime and sand	59	765
Lime	401	1166
Sand and lime	43	1209
Lime	23	1232
Sandy lime	41	1273
Sandy shale and time	76	1349
Shale	40	1389
Sandy lime	19	1408
Lime	52	1460
Sandy lime	42	1502
Sand	55	1557
Gray lime	7	1564
Shale and lime	14	1578

A 20-in. diameter hole was drilled to a depth of 14 ft, reduced to 19 in. between 14 and 174 ft, reduced to 16 in. between 174 and 765 ft, and finished 12 in. in diameter from 765 to 1578 ft. The well is cased with 20-in. pipe from 0.8 ft above the pumphouse floor to a depth of 14 ft and 16-in. pipe from 0.8 ft above the pumphouse floor to a depth of 174 ft (cemented in).

A production test was conducted by the driller on December 3-4, 1964. After 24 hr of pumping at a rate of 1200 gpm, the final drawdown was 298 ft from a nonpumping water level of 169 ft below land surface.

On October 6, 1975, the nonpumping water level was reported to be 300 ft.

The pumping equipment presently installed consists of a 150-hp 1800 rpm U. S. electric motor, a 14-in., 7-stage Johnston vertical turbine pump set at 410 ft, rated at 750 gpm at about 550 ft head, and has 410 ft of 8-in. column pipe. The well is equipped with 410 ft of airline.

The following mineral analysis made by the Illinois Environmental Protection Agency (Lab. No. B18488) is for a water sample from the well collected October 29, 1975, after 4 hr of pumping.

### WELL NO. 3, LABORATORY NO. B18488

		mg/l	me/l			mg/l	me/l
Iron	Fe	0.1		Silica	SiO ₂	8	
Manganese	Mn	0.00	)	Fluoride	F	1.2	0.06
Ammonium	NH ₄	1,4	0.08	Boron	В	1.0	
Sodium	Na	280	12.18	Nitrate	NO ₃	0.0	0.00
Potassium	K	21	0.54	Chloride	CI T	273	7.70
Calcium	Ca	104	5.19	Sulfate	SO ₄	406	8.44
Magnesium	Mg	41	3.37	Alkalinity	(asCaCO ₃	) 288	5.76
Arsenic	As	0.0	1	Hardness(a	sCaCO ₃ )	428	8.56
Barium	Вa	0.0			_		
Cadmium	Cd	0.00	)	Total disso	olved		
Chromium	Cr	0.00	כ	minerals		1268	
Copper	Cu	0.0	1				
Lead	Pb.	0.0	)				
Mercury	Hg	0.00	000				
Nickel	Ni	0.0					
Selenium	Se	0.00	)				
Silver	Ag	0.00	)				
Zinc	Zn	0.0		pH (as rec'	d) 7.6	5	